Search results
Results from the WOW.Com Content Network
Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called dimensions, to describe the sizes or locations of objects in the everyday world.
Minkowski space. Hermann Minkowski (1864–1909) found that the theory of special relativity could be best understood as a four-dimensional space, since known as the Minkowski spacetime. In physics, Minkowski space (or Minkowski spacetime) (/ mɪŋˈkɔːfski, - ˈkɒf -/ [1]) is the main mathematical description of spacetime in the absence of ...
t. e. In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. [1][2] Thus, a line has a dimension of one (1D) because only one coordinate is needed to specify a point on it – for example, the point at 5 on a number line.
e. In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive where and when ...
In mathematics, the group of rotations about a fixed point in four-dimensional Euclidean space is denoted SO (4). The name comes from the fact that it is the special orthogonal group of order 4. In this article rotation means rotational displacement. For the sake of uniqueness, rotation angles are assumed to be in the segment [0, π] except ...
t. e. In physics, Kaluza–Klein theory (KK theory) is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to string theory. In their setup, the vacuum has the usual 3 dimensions of space and one dimension of ...
To obtain the spinors of physics, such as the Dirac spinor, one extends the construction to obtain a spin structure on 4-dimensional space-time (Minkowski space). Effectively, one starts with the tangent manifold of space-time, each point of which is a 4-dimensional vector space with SO(3,1) symmetry, and then builds the spin group at each point.
A hierarchy of 4D point groups and some subgroups. Vertical positioning is grouped by order. Blue, green, and pink colors show reflectional, hybrid, and rotational groups. In geometry, a point group in four dimensions is an isometry group in four dimensions that leaves the origin fixed, or correspondingly, an isometry group of a 3-sphere .