enow.com Web Search

  1. Ads

    related to: tile calculation formula

Search results

  1. Results from the WOW.Com Content Network
  2. Einstein problem - Wikipedia

    en.wikipedia.org/wiki/Einstein_problem

    Aperiodic tiling with "Tile(1,1)". The tiles are colored according to their rotational orientation modulo 60 degrees. [1] ( Smith, Myers, Kaplan, and Goodman-Strauss) In plane geometry, the einstein problem asks about the existence of a single prototile that by itself forms an aperiodic set of prototiles; that is, a shape that can tessellate space but only in a nonperiodic way.

  3. Drainage equation - Wikipedia

    en.wikipedia.org/wiki/Drainage_equation

    Drainage equation. A drainage equation is an equation describing the relation between depth and spacing of parallel subsurface drains, depth of the watertable, depth and hydraulic conductivity of the soils. It is used in drainage design. A well known steady-state drainage equation is the Hooghoudt drain spacing equation.

  4. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    Tessellation in two dimensions, also called planar tiling, is a topic in geometry that studies how shapes, known as tiles, can be arranged to fill a plane without any gaps, according to a given set of rules. These rules can be varied. Common ones are that there must be no gaps between tiles, and that no corner of one tile can lie along the edge ...

  5. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    The golden ratio is also an algebraic number and even an algebraic integer. It has minimal polynomial. This quadratic polynomial has two roots, and. The golden ratio is also closely related to the polynomial. which has roots and As the root of a quadratic polynomial, the golden ratio is a constructible number.

  6. Euclidean tilings by convex regular polygons - Wikipedia

    en.wikipedia.org/wiki/Euclidean_tilings_by...

    Euclidean tilings are usually named after Cundy & Rollett’s notation. [1] This notation represents (i) the number of vertices, (ii) the number of polygons around each vertex (arranged clockwise) and (iii) the number of sides to each of those polygons. For example: 3 6; 3 6; 3 4.6, tells us there are 3 vertices with 2 different vertex types ...

  7. Aperiodic tiling - Wikipedia

    en.wikipedia.org/wiki/Aperiodic_tiling

    An aperiodic tiling using a single shape and its reflection, discovered by David Smith. An aperiodic tiling is a non-periodic tiling with the additional property that it does not contain arbitrarily large periodic regions or patches. A set of tile-types (or prototiles) is aperiodic if copies of these tiles can form only non- periodic tilings.

  1. Ads

    related to: tile calculation formula