enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Resilience (materials science) - Wikipedia

    en.wikipedia.org/wiki/Resilience_(materials_science)

    Modulus of resilience (U r) is measured in a unit of joule per cubic meter (J·m −3) in the SI system, i.e. elastical deformation energy per surface of test specimen (merely for gauge-length part). Like the unit of tensile toughness ( U T ), the unit of resilience can be easily calculated by using area underneath the stress–strain ( σ ...

  3. Toughness - Wikipedia

    en.wikipedia.org/wiki/Toughness

    If the upper limit of integration up to the yield point is restricted, the energy absorbed per unit volume is known as the modulus of resilience. Mathematically, the modulus of resilience can be expressed by the product of the square of the yield stress divided by two times the Young's modulus of elasticity. That is,

  4. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    Young's modulus (E) describes tensile and compressive elasticity, or the tendency of an object to deform along an axis when opposing forces are applied along that axis; it is defined as the ratio of tensile stress to tensile strain. It is often referred to simply as the elastic modulus.

  5. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    Young's modulus (or Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise. It is the modulus of elasticity for tension or axial compression. Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the ...

  6. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    In engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined (see tensile testing). These curves reveal many of the properties of a ...

  7. Fracture toughness - Wikipedia

    en.wikipedia.org/wiki/Fracture_toughness

    Fracture toughness. In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having ...

  8. List of materials properties - Wikipedia

    en.wikipedia.org/wiki/List_of_materials_properties

    Shear modulus: Ratio of shear stress to shear strain (MPa) Shear strength: Maximum shear stress a material can withstand; Slip: A tendency of a material's particles to undergo plastic deformation due to a dislocation motion within the material. Common in Crystals. Specific modulus: Modulus per unit volume (MPa/m^3)

  9. Elasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Elasticity_(physics)

    The SI unit for elasticity and the elastic modulus is the pascal (Pa). This unit is defined as force per unit area, generally a measurement of pressure, which in mechanics corresponds to stress. The pascal and therefore elasticity have the dimension L −1 ⋅M⋅T −2.