enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    If nonempty f: X → Y is injective, construct a left inverse g: Y → X as follows: for all y ∈ Y, if y is in the image of f, then there exists xX such that f(x) = y. Let g(y) = x; this definition is unique because f is injective. Otherwise, let g(y) be an arbitrary element of X. For all xX, f(x) is in the image of f.

  3. Function composition - Wikipedia

    en.wikipedia.org/wiki/Function_composition

    Note: If f takes its values in a ring (in particular for real or complex-valued f ), there is a risk of confusion, as f n could also stand for the n-fold product of f, e.g. f 2 (x) = f(x) · f(x). [12] For trigonometric functions, usually the latter is meant, at least for positive exponents. [12]

  4. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).

  5. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  6. Golden-section search - Wikipedia

    en.wikipedia.org/wiki/Golden-section_search

    The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.

  7. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    For example, let f(x) = x 2 and g(x) = x + 1, then (()) = + and (()) = (+) agree just for = The function composition is associative in the sense that, if one of ( h ∘ g ) ∘ f {\displaystyle (h\circ g)\circ f} and h ∘ ( g ∘ f ) {\displaystyle h\circ (g\circ f)} is defined, then the other is also defined, and they are equal, that is, ( h ...

  8. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    Graph of the cubic function f(x) = 2x 3 − 3x 2 − 3x + 2 = (x + 1) (2x − 1) (x2) In the 7th century, the Tang dynasty astronomer mathematician Wang Xiaotong in his mathematical treatise titled Jigu Suanjing systematically established and solved numerically 25 cubic equations of the form x 3 + px 2 + qx = N , 23 of them with p , q ≠ ...

  9. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    [a] This means that the function that maps y to f(x) + J(x) ⋅ (y – x) is the best linear approximation of f(y) for all points y close to x. The linear map h → J(x) ⋅ h is known as the derivative or the differential of f at x. When m = n, the Jacobian matrix is square, so its determinant is a well-defined function of x, known as the ...