Search results
Results from the WOW.Com Content Network
Electromagnetism. Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits. The equations provide a mathematical model for electric, optical, and radio ...
Using the Maxwell equations, one can see that the electromagnetic stress–energy tensor (defined above) satisfies the following differential equation, relating it to the electromagnetic tensor and the current four-vector , + = or , + =, which expresses the conservation of linear momentum and energy by electromagnetic interactions.
Maxwell's equations were an essential inspiration for the development of special relativity. Possibly the most important aspect was their denial of instantaneous action at a distance. Rather, according to them, forces are propagated at the velocity of light through the electromagnetic field. [28]: 189.
Classical electromagnetism or classical electrodynamics is a branch of theoretical physics that studies the interactions between electric charges and currents using an extension of the classical Newtonian model. It is, therefore, a classical field theory. The theory provides a description of electromagnetic phenomena whenever the relevant ...
Electromagnetism. In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. [1][2] Classically, electromagnetic radiation consists of electromagnetic waves, which are synchronized oscillations of electric and magnetic fields.
e. In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime (where the metric may not be the Minkowski metric) or where one uses an arbitrary (not necessarily Cartesian) coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are ...
The most common description of the electromagnetic field uses two three-dimensional vector fields called the electric field and the magnetic field. These vector fields each have a value defined at every point of space and time and are thus often regarded as functions of the space and time coordinates. As such, they are often written as E(x, y ...
Electromagnetism is one of the fundamental forces of nature alongside gravity, the strong force and the weak force. Whereas gravity acts on all things that have mass, electromagnetism acts on all things that have electric charge. Furthermore, as there is the conservation of mass according to which mass cannot be created or destroyed, there is ...