enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/EulerBernoulli_beam_theory

    Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral ...

  3. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    Euler's critical load or Euler's buckling load is the compressive load at which a slender column will suddenly bend or buckle. It is given by the formula: [1] where. P c r {\displaystyle P_ {cr}} , Euler's critical load (longitudinal compression load on column), E {\displaystyle E} , Young's modulus of the column material, I {\displaystyle I ...

  4. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    The starting point is the relation from Euler-Bernoulli beam theory = Where is the deflection and is the bending moment. This equation [7] is simpler than the fourth-order beam equation and can be integrated twice to find if the value of as a function of is known.

  5. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    The Euler–Bernoulli beam equation defines the behaviour of a beam element (see below). It is based on five assumptions: Continuum mechanics is valid for a bending beam. The stress at a cross section varies linearly in the direction of bending, and is zero at the centroid of every cross section.

  6. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    Simple beam bending is often analyzed with the Euler–Bernoulli beam equation. The conditions for using simple bending theory are: [4] The beam is subject to pure bending. This means that the shear force is zero, and that no torsional or axial loads are present. The material is isotropic (or orthotropic) and homogeneous.

  7. Timoshenko–Ehrenfest beam theory - Wikipedia

    en.wikipedia.org/wiki/Timoshenko–Ehrenfest_beam...

    The resulting equation is of 4th order but, unlike Euler–Bernoulli beam theory, there is also a second-order partial derivative present. Physically, taking into account the added mechanisms of deformation effectively lowers the stiffness of the beam, while the result is a larger deflection under a static load and lower predicted ...

  8. Beam (structure) - Wikipedia

    en.wikipedia.org/wiki/Beam_(structure)

    A beam of PSL lumber installed to replace a load-bearing wall. The primary tool for structural analysis of beams is the Euler–Bernoulli beam equation. This equation accurately describes the elastic behaviour of slender beams where the cross sectional dimensions are small compared to the length of the beam.

  9. Plate theory - Wikipedia

    en.wikipedia.org/wiki/Plate_theory

    The Kirchhoff–Love theory is an extension of Euler–Bernoulli beam theory to thin plates. The theory was developed in 1888 by Love [2] using assumptions proposed by Kirchhoff. It is assumed that a mid-surface plane can be used to represent the three-dimensional plate in two-dimensional form.