enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air is about 343 m/s (1,125 ft/s; 1,235 km/h; 767 mph; 667 kn), or 1 km in 2.91 s or one mile in 4.69 s.

  3. Harmonic mean - Wikipedia

    en.wikipedia.org/wiki/Harmonic_mean

    For instance, if a vehicle travels a certain distance d outbound at a speed x (e.g. 60 km/h) and returns the same distance at a speed y (e.g. 20 km/h), then its average speed is the harmonic mean of x and y (30 km/h), not the arithmetic mean (40 km/h). The total travel time is the same as if it had traveled the whole distance at that average speed.

  4. Speed - Wikipedia

    en.wikipedia.org/wiki/Speed

    L T−1. In kinematics, the speed (commonly referred to as v) of an object is the magnitude of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a scalar quantity. [1] The average speed of an object in an interval of time is the distance travelled by the object divided by the ...

  5. Root mean square - Wikipedia

    en.wikipedia.org/wiki/Root_mean_square

    In mathematics, the root mean square (abbrev. RMS, RMS or rms) of a set of numbers is the square root of the set's mean square. [1] Given a set , its RMS is denoted as either or . The RMS is also known as the quadratic mean (denoted ), [2][3] a special case of the generalized mean. The RMS of a continuous function is denoted and can be defined ...

  6. Orbital speed - Wikipedia

    en.wikipedia.org/wiki/Orbital_speed

    In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.

  7. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances. If an object fell 10 000 m to Earth, then the results of both ...

  8. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    Kinetic theory of gases. The temperature of the ideal gas is proportional to the average kinetic energy of its particles. The size of helium atoms relative to their spacing is shown to scale under 1,950 atmospheres of pressure. The atoms have an average speed relative to their size slowed down here two trillion fold from that at room temperature.

  9. Mean speed theorem - Wikipedia

    en.wikipedia.org/wiki/Mean_speed_theorem

    Mean speed theorem. Oresme's geometric verification of the Oxford Calculators' Merton Rule of uniform acceleration, or mean speed theorem. Galileo 's demonstration of the law of the space traversed in case of uniformly varied motion. It is the same demonstration that Oresme had made centuries earlier. The mean speed theorem, also known as the ...