enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. NumPy - Wikipedia

    en.wikipedia.org/wiki/NumPy

    numpy.org. NumPy (pronounced / ˈnʌmpaɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3] The predecessor of NumPy, Numeric, was originally created by Jim Hugunin with ...

  3. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop: Input: matrices A and B.

  4. Python (programming language) - Wikipedia

    en.wikipedia.org/wiki/Python_(programming_language)

    Python 3.0, released in 2008, was a major revision not completely backward-compatible with earlier versions. Python 2.7.18, released in 2020, was the last release of Python 2. [36] Python consistently ranks as one of the most popular programming languages, and has gained widespread use in the machine learning community. [37] [38] [39] [40]

  5. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    The result matrix has the number of rows of the first and the number of columns of the second matrix. In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in ...

  6. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    C [i][j] = C [i][j] + A [i][k]* B [k][j] output C (as A*B) This algorithm requires, in the worst case, ⁠ ⁠ multiplications of scalars and ⁠ ⁠ additions for computing the product of two square n×n matrices. Its computational complexity is therefore ⁠ ⁠, in a model of computation where field operations (addition and multiplication ...

  7. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.

  8. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    Outer product. In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors ...

  9. CUR matrix approximation - Wikipedia

    en.wikipedia.org/wiki/CUR_matrix_approximation

    A CUR matrix approximation is a set of three matrices that, when multiplied together, closely approximate a given matrix. [1][2][3] A CUR approximation can be used in the same way as the low-rank approximation of the singular value decomposition (SVD). CUR approximations are less accurate than the SVD, but they offer two key advantages, both ...