Search results
Results from the WOW.Com Content Network
A fraction in chemistry is a quantity collected from a batch of a substance in a fractionating separation process. In such a process, a mixture is separated into fractions, which have compositions that vary according to a gradient. A fraction can be defined as a group of chemicals that have similar boiling points.
In chemistry, the lever rule is a formula used to determine the mole fraction (x i) or the mass fraction (w i) of each phase of a binary equilibrium phase diagram. It can be used to determine the fraction of liquid and solid phases for a given binary composition and temperature that is between the liquidus and solidus line. [1]
[1] [2] Fractions are collected based on differences in a specific property of the individual components. A common trait in fractionations is the need to find an optimum between the amount of fractions collected and the desired purity in each fraction. Fractionation makes it possible to isolate more than two components in a mixture in a single run.
The numbers 200-900 would be confused easily with 22 to 29 if they were used in chemistry. khīlioi = 1000, diskhīlioi = 2000, triskhīlioi = 3000, etc. 13 to 19 are formed by starting with the Greek word for the number of ones, followed by και (the Greek word for 'and'), followed by δέκα (the Greek word for 'ten').
Periodic table of the chemical elements showing the most or more commonly named sets of elements (in periodic tables), and a traditional dividing line between metals and nonmetals. The f-block actually fits between groups 2 and 3 ; it is usually shown at the foot of the table to save horizontal space.
In many cases, multiple configurations are within a small range of energies and the small irregularities that arise in the d- and f-blocks are quite irrelevant chemically. [1] The construction of the periodic table ignores these irregularities and is based on ideal electron configurations.
The abundance of the chemical elements is a measure of the occurrences of the chemical elements relative to all other elements in a given environment. Abundance is measured in one of three ways: by mass fraction (in commercial contexts often called weight fraction), by mole fraction (fraction of atoms by numerical count, or sometimes fraction of molecules in gases), or by volume fraction.
Neon 10 Ne 20.180: 3: Sodium 11 Na 22.990: Magnesium 12 Mg 24.305: Aluminium 13 Al 26.982: Silicon 14 Si 28.085: Phosphorus 15 P 30.974: Sulfur 16 S 32.06: Chlorine 17 Cl 35.45: Argon 18 Ar 39.95: 4: Potassium 19 K 39.098: Calcium 20 Ca 40.078: Scandium 21 Sc 44.956: Titanium 22 Ti 47.867: Vanadium 23 V 50.942: Chromium ...