Search results
Results from the WOW.Com Content Network
is a simple IDW weighting function, as defined by Shepard, [3] x denotes an interpolated (arbitrary) point, x i is an interpolating (known) point, is a given distance (metric operator) from the known point x i to the unknown point x, N is the total number of known points used in interpolation and is a positive real number, called the power ...
In a multiplicatively weighted Voronoi diagram, the distance between a point and a site is divided by the (positive) weight of the site. [1] In the plane under the ordinary Euclidean distance , the multiplicatively weighted Voronoi diagram is also called circular Dirichlet tessellation [ 2 ] [ 3 ] and its edges are circular arcs and straight ...
Inverse distance weighting; ABOS - approximation based on smoothing; Kriging; Gradient-enhanced kriging (GEK) Thin plate spline; Polyharmonic spline (the thin-plate-spline is a special case of a polyharmonic spline) Radial basis function (Polyharmonic splines are a special case of radial basis functions with low degree polynomial terms) Least ...
Natural neighbor interpolation with Sibson weights. The area of the green circles are the interpolating weights, w i.The purple-shaded region is the new Voronoi cell, after inserting the point to be interpolated (black dot).
For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().
Inverse distance weighting; Radial basis function (RBF) — a function of the form ƒ(x) = φ(|x−x 0 |) Polyharmonic spline — a commonly used radial basis function; Thin plate spline — a specific polyharmonic spline: r 2 log r; Hierarchical RBF; Subdivision surface — constructed by recursively subdividing a piecewise linear interpolant
Radial basis function (RBF) interpolation is an advanced method in approximation theory for constructing high-order accurate interpolants of unstructured data, possibly in high-dimensional spaces. The interpolant takes the form of a weighted sum of radial basis functions .
Sheppard, W.F. (1897). "On the Calculation of the most Probable Values of Frequency-Constants, for Data arranged according to Equidistant Division of a Scale".