enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stokes flow - Wikipedia

    en.wikipedia.org/wiki/Stokes_flow

    Shown is a sphere in Stokes flow, at very low Reynolds number. Stokes flow (named after George Gabriel Stokes), also named creeping flow or creeping motion, [1] is a type of fluid flow where advective inertial forces are small compared with viscous forces. [2] The Reynolds number is low, i.e. . This is a typical situation in flows where the ...

  3. Coriolis–Stokes force - Wikipedia

    en.wikipedia.org/wiki/Coriolis–Stokes_force

    In fluid dynamics, the Coriolis–Stokes force is a forcing of the mean flow in a rotating fluid due to interaction of the Coriolis effect and wave-induced Stokes drift. This force acts on water independently of the wind stress. [1] This force is named after Gaspard-Gustave Coriolis and George Gabriel Stokes, two

  4. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. [1] It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations .

  5. Rayleigh problem - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_problem

    In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problems that have an exact solution for the Navier-Stokes equations.

  6. Stokes drift - Wikipedia

    en.wikipedia.org/wiki/Stokes_drift

    For instance, a particle floating at the free surface of water waves, experiences a net Stokes drift velocity in the direction of wave propagation. More generally, the Stokes drift velocity is the difference between the average Lagrangian flow velocity of a fluid parcel, and the average Eulerian flow velocity of the fluid at a fixed

  7. Diffusiophoresis and diffusioosmosis - Wikipedia

    en.wikipedia.org/wiki/Diffusiophoresis_and_diff...

    Beyond this distance, the diffusioosmotic velocity does not vary with distance from the surface. The driving force for diffusioosmosis is thermodynamic, i.e., it acts to reduce the free energy if the system, and so the direction of flow is away from surface regions of low surface free energy, and towards regions of high surface free energy.

  8. Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Drag_(physics)

    Stokes derived the drag around a sphere at very low Reynolds numbers, the result of which is called Stokes' law. [29] In the limit of high Reynolds numbers, the Navier–Stokes equations approach the inviscid Euler equations, of which the potential-flow solutions considered by d'Alembert are solutions. However, all experiments at high Reynolds ...

  9. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The Navier–Stokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades ...