enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    A floating-point system can be used to represent, with a fixed number of digits, numbers of very different orders of magnitude — such as the number of meters between galaxies or between protons in an atom. For this reason, floating-point arithmetic is often used to allow very small and very large real numbers that require fast processing times.

  3. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point arithmetic originally established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and ...

  4. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    Like the binary floating-point formats, the number is divided into a sign, an exponent, and a significand. Unlike binary floating-point, numbers are not necessarily normalized; values with few significant digits have multiple possible representations: 1×10 2 =0.1×10 3 =0.01×10 4, etc. When the significand is zero, the exponent can be any ...

  5. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...

  6. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    The number 0.15625 represented as a single-precision IEEE 754-1985 floating-point number. See text for explanation. The three fields in a 64bit IEEE 754 float. Floating-point numbers in IEEE 754 format consist of three fields: a sign bit, a biased exponent, and a fraction. The following example illustrates the meaning of each.

  7. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    To approximate the greater range and precision of real numbers, we have to abandon signed integers and fixed-point numbers and go to a "floating-point" format. In the decimal system, we are familiar with floating-point numbers of the form (scientific notation): 1.1030402 × 10 5 = 1.1030402 × 100000 = 110304.02. or, more compactly: 1.1030402E5

  8. Subnormal number - Wikipedia

    en.wikipedia.org/wiki/Subnormal_number

    The significand (or mantissa) of an IEEE floating-point number is the part of a floating-point number that represents the significant digits. For a positive normalised number, it can be represented as m 0.m 1 m 2 m 3...m p−2 m p−1 (where m represents a significant digit, and p is the precision) with non-zero m 0.

  9. Binary integer decimal - Wikipedia

    en.wikipedia.org/wiki/Binary_Integer_Decimal

    A decimal floating-point number can be encoded in several ways, the different ways represent different precisions, for example 100.0 is encoded as 1000×10 −1, while 100.00 is encoded as 10000×10 −2. The set of possible encodings of the same numerical value is called a cohort in the standard. If the result of a calculation is inexact the ...