enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Right bundle branch block - Wikipedia

    en.wikipedia.org/wiki/Right_bundle_branch_block

    A right bundle branch block (RBBB) is a heart block in the right bundle branch of the electrical conduction system. [1] During a right bundle branch block, the right ventricle is not directly activated by impulses traveling through the right bundle branch. However, the left bundle branch still normally activates the left ventricle.

  3. Carrier generation and recombination - Wikipedia

    en.wikipedia.org/wiki/Carrier_generation_and...

    Carrier generation describes processes by which electrons gain energy and move from the valence band to the conduction band, producing two mobile carriers; while recombination describes processes by which a conduction band electron loses energy and re-occupies the energy state of an electron hole in the valence band.

  4. Electron transfer - Wikipedia

    en.wikipedia.org/wiki/Electron_transfer

    Furthermore, theories have been put forward to take into account the effects of vibronic coupling on electron transfer, in particular, the PKS theory of electron transfer. [10] In proteins, ET rates are governed by the bond structures: the electrons, in effect, tunnel through the bonds comprising the chain structure of the proteins. [11]

  5. Bundle branch block - Wikipedia

    en.wikipedia.org/wiki/Bundle_branch_block

    A right bundle branch block typically causes prolongation of the last part of the QRS complex and may shift the heart's electrical axis slightly to the right. The ECG will show a terminal R wave in lead V1 and a slurred S wave in lead I. Left bundle branch block widens the entire QRS, and in most cases shifts the heart's electrical axis to the ...

  6. Spin transition - Wikipedia

    en.wikipedia.org/wiki/Spin_transition

    For an iron(II) compound this transfer involves two electrons and the spin variations is =. The occupancy of the e g {\displaystyle e_{g}} orbitals is higher in the HS state than in the LS state and these orbitals are more antibonding than the t 2 g {\displaystyle t_{2g}} .

  7. Charge transport mechanisms - Wikipedia

    en.wikipedia.org/wiki/Charge_transport_mechanisms

    Crystalline solids and molecular solids are two opposite extreme cases of materials that exhibit substantially different transport mechanisms. While in atomic solids transport is intra-molecular, also known as band transport, in molecular solids the transport is inter-molecular, also known as hopping transport.

  8. Ballistic conduction - Wikipedia

    en.wikipedia.org/wiki/Ballistic_conduction

    Ballistic electrons behave like light in a waveguide or a high-quality optical assembly. Non-ballistic electrons behave like light diffused in milk or reflected off a white wall or a piece of paper. Electrons can be scattered several ways in a conductor. Electrons have several properties: wavelength (energy), direction, phase, and spin orientation.

  9. Proton-coupled electron transfer - Wikipedia

    en.wikipedia.org/wiki/Proton-coupled_electron...

    A Proton-coupled electron transfer (PCET) is a chemical reaction that involves the transfer of electrons and protons from one atom to another. The term was originally coined for single proton, single electron processes that are concerted, [ 1 ] but the definition has relaxed to include many related processes.