enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    The encoding scheme for these binary interchange formats is the same as that of IEEE 754-1985: a sign bit, followed by w exponent bits that describe the exponent offset by a bias, and p − 1 bits that describe the significand.

  3. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    IEEE 754-1985 [1] is a historic industry standard for representing floating-point numbers in computers, ... * Sign bit can be either 0 or 1 .

  4. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    If an IEEE 754 single-precision number is converted to a decimal string with at least 9 significant digits, and then converted back to single-precision representation, the final result must match the original number. [6] The sign bit determines the sign of the number, which is the sign of the significand as well. "1" stands for negative.

  5. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    The IEEE 754 standard specifies a binary64 as having: Sign bit: 1 bit; Exponent: 11 bits; Significand precision: 53 bits (52 explicitly stored) The sign bit determines the sign of the number (including when this number is zero, which is signed).

  6. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    The IEEE 754 standard [9] specifies a binary16 as having the following format: Sign bit: 1 bit; Exponent width: 5 bits; Significand precision: 11 bits (10 explicitly stored) The format is laid out as follows: The format is assumed to have an implicit lead bit with value 1 unless the exponent field is stored with all zeros.

  7. Signed zero - Wikipedia

    en.wikipedia.org/wiki/Signed_zero

    The most common formats with a signed zero are floating-point formats (IEEE 754 formats or similar), described below. Negative zero by IEEE 754 representation in binary32. In IEEE 754 binary floating-point formats, zero values are represented by the biased exponent and significand both being zero. Negative zero has the sign bit set to one.

  8. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    A minifloat in 1 byte (8 bit) with 1 sign bit, 4 exponent bits and 3 significand bits (in short, a 1.4.3 minifloat) is demonstrated here. The exponent bias is defined as 7 to center the values around 1 to match other IEEE 754 floats [3] [4] so (for most values) the actual multiplier for exponent x is 2 x−7. All IEEE 754 principles should be ...

  9. IEEE 754-2008 revision - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-2008_revision

    The new IEEE 754 (formally IEEE Std 754-2008, the IEEE Standard for Floating-Point Arithmetic) was published by the IEEE Computer Society on 29 August 2008, and is available from the IEEE Xplore website [4] This standard replaces IEEE 754-1985. IEEE 854, the Radix-Independent floating-point standard was withdrawn in December 2008.