enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    In the IEEE 754 standard, the 64-bit base-2 format is officially referred to as binary64; it was called double in IEEE 754-1985. IEEE 754 specifies additional floating-point formats, including 32-bit base-2 single precision and, more recently, base-10 representations ( decimal floating point ).

  3. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    IEEE 754-2008 has reduced these allowances, but a few variations still remain (especially for binary formats). The reproducibility clause recommends that language standards should provide a means to write reproducible programs (i.e., programs that will produce the same result in all implementations of a language) and describes what needs to be ...

  4. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    IEEE 754-1985 [1] is a historic industry standard for representing floating-point numbers in computers, officially adopted in 1985 and superseded in 2008 by IEEE 754-2008, and then again in 2019 by minor revision IEEE 754-2019. [2] During its 23 years, it was the most widely used format for floating-point computation.

  5. Quadruple-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Quadruple-precision...

    William Kahan, primary architect of the original IEEE 754 floating-point standard noted, "For now the 10-byte Extended format is a tolerable compromise between the value of extra-precise arithmetic and the price of implementing it to run fast; very soon two more bytes of precision will become tolerable, and ultimately a 16-byte format ...

  6. Extended precision - Wikipedia

    en.wikipedia.org/wiki/Extended_precision

    That kind of gradual evolution towards wider precision was already in view when IEEE Standard 754 for Floating-Point Arithmetic was framed." [19] This 80-bit format uses one bit for the sign of the significand, 15 bits for the exponent field (i.e. the same range as the 128-bit quadruple precision IEEE 754 format) and

  7. Binary integer decimal - Wikipedia

    en.wikipedia.org/wiki/Binary_Integer_Decimal

    The IEEE 754-2008 standard includes decimal floating-point number formats in which the significand and the exponent (and the payloads of NaNs) can be encoded in two ways, referred to as binary encoding and decimal encoding.

  8. Subnormal number - Wikipedia

    en.wikipedia.org/wiki/Subnormal_number

    In IEEE 754-2008, denormal numbers are renamed subnormal numbers and are supported in both binary and decimal formats. In binary interchange formats, subnormal numbers are encoded with a biased exponent of 0, but are interpreted with the value of the smallest allowed exponent, which is one greater (i.e., as if it were encoded as a 1).

  9. 1023 (number) - Wikipedia

    en.wikipedia.org/wiki/1023_(number)

    Floating-point units in computers often run a IEEE 754 64-bit, floating-point excess-1023 format in 11-bit binary. In this format, also called binary64, the exponent of a floating-point number (e.g. 1.009001 E1031) appears as an unsigned binary integer from 0 to 2047, where subtracting 1023 from it gives the actual signed value.