Search results
Results from the WOW.Com Content Network
Pulse-Doppler signal processing separates reflected signals into a number of frequency filters. There is a separate set of filters for each ambiguous range. The I and Q samples described above are used to begin the filtering process. These samples are organized into the m × n matrix of time domain samples shown in the top half of the diagram.
Pulse-Doppler systems measure the range to objects by measuring the elapsed time between sending a pulse of radio energy and receiving a reflection of the object. Radio waves travel at the speed of light , so the distance to the object is the elapsed time multiplied by the speed of light, divided by two – there and back.
Range ambiguity resolution is a technique used with medium pulse-repetition frequency (PRF) radar to obtain range information for distances that exceed the distance between transmit pulses. This signal processing technique is required with pulse-Doppler radar .
In pulsed radar and sonar signal processing, an ambiguity function is a two-dimensional function of propagation delay and Doppler frequency, (,).It represents the distortion of a returned pulse due to the receiver matched filter [1] (commonly, but not exclusively, used in pulse compression radar) of the return from a moving target.
Other difficulties arise when the interference covariance matrix is ill-conditioned, making the inversion numerically unstable. [5] In general, this adaptive filtering must be performed for each of the unambiguous range bins in the system, for each target of interest (angle-Doppler coordinates), making for a massive computational burden. [4]
A compact characterization of the whole system is then given by the matrix (), where one should note the dependence on the parameter PRF. According to a generalized sampling theorem, N independent representations of a signal, each subsampled at 1/N of the signal's Nyquist frequency, allow for the unambiguous "reconstruction" of the original ...
Public health experts are warning of a ‘quad-demic’ this winter. Here’s where flu, COVID, RSV, and norovirus are spreading
At any range, with similar azimuth and elevation angles and as viewed by a radar with an unmodulated pulse, the range resolution is approximately equal in distance to half of the pulse duration times the speed of light (approximately 300 meters per microsecond). Radar echoes, showing a representation of the carrier