enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism. [ 2 ] Anomalies are instances or collections of data that occur very rarely in the data set and whose features differ significantly from most of the data.

  3. Local outlier factor - Wikipedia

    en.wikipedia.org/wiki/Local_outlier_factor

    Due to the local approach, LOF is able to identify outliers in a data set that would not be outliers in another area of the data set. For example, a point at a "small" distance to a very dense cluster is an outlier, while a point within a sparse cluster might exhibit similar distances to its neighbors.

  4. Peirce's criterion - Wikipedia

    en.wikipedia.org/wiki/Peirce's_criterion

    In data sets containing real-numbered measurements, the suspected outliers are the measured values that appear to lie outside the cluster of most of the other data values. . The outliers would greatly change the estimate of location if the arithmetic average were to be used as a summary statistic of locati

  5. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    However, multiple iterations change the probabilities of detection, and the test should not be used for sample sizes of six or fewer since it frequently tags most of the points as outliers. [3] Grubbs's test is defined for the following hypotheses: H 0: There are no outliers in the data set H a: There is exactly one outlier in the data set

  6. Outlier - Wikipedia

    en.wikipedia.org/wiki/Outlier

    The modified Thompson Tau test is used to find one outlier at a time (largest value of δ is removed if it is an outlier). Meaning, if a data point is found to be an outlier, it is removed from the data set and the test is applied again with a new average and rejection region. This process is continued until no outliers remain in a data set.

  7. DBSCAN - Wikipedia

    en.wikipedia.org/wiki/DBSCAN

    It is a density-based clustering non-parametric algorithm: given a set of points in some space, it groups together points that are closely packed (points with many nearby neighbors), and marks as outliers points that lie alone in low-density regions (those whose nearest neighbors are too far away). DBSCAN is one of the most commonly used and ...

  8. Mahalanobis distance - Wikipedia

    en.wikipedia.org/wiki/Mahalanobis_distance

    Mahalanobis's definition was prompted by the problem of identifying the similarities of skulls based on measurements (the earliest work related to similarities of skulls are from 1922 and another later work is from 1927). [3] [4] R.C. Bose later obtained the sampling distribution of Mahalanobis distance, under the assumption of equal dispersion ...

  9. Studentized residual - Wikipedia

    en.wikipedia.org/wiki/Studentized_residual

    This is an important technique in the detection of outliers. It is among several named in honor of William Sealey Gosset , who wrote under the pseudonym "Student" (e.g., Student's distribution ). Dividing a statistic by a sample standard deviation is called studentizing , in analogy with standardizing and normalizing .