Search results
Results from the WOW.Com Content Network
If a term in the above particular integral for y appears in the homogeneous solution, it is necessary to multiply by a sufficiently large power of x in order to make the solution independent. If the function of x is a sum of terms in the above table, the particular integral can be guessed using a sum of the corresponding terms for y. [1]
The solution is unique if and only if the rank r equals the number n of variables. Otherwise the general solution has n – r free parameters; hence in such a case there are an infinitude of solutions, which can be found by imposing arbitrary values on n – r of the variables and solving the resulting system for its unique solution; different ...
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
Note that if the constant term in the original third equation had been anything other than –7, the values (a, b) = (1, 1) that satisfied the first two equations in the parameters would not have satisfied the third one (a – 8b = constant), so there would exist no a, b satisfying all three equations in the parameters, and therefore the third ...
A constant coefficient, also known as constant term or simply constant, is a quantity either implicitly attached to the zeroth power of a variable or not attached to other variables in an expression; for example, the constant coefficients of the expressions above are the number 3 and the parameter c, involved in 3=c ⋅ x 0.
Let y (n) (x) be the nth derivative of the unknown function y(x).Then a Cauchy–Euler equation of order n has the form () + () + + =. The substitution = (that is, = (); for <, in which one might replace all instances of by | |, extending the solution's domain to {}) can be used to reduce this equation to a linear differential equation with constant coefficients.
This case yields either a single solution or no solution, the latter occurring when the coefficient vector of one equation can be replicated by a weighted sum of the coefficient vectors of the other equations but that weighted sum applied to the constant terms of the other equations does not replicate the one equation's constant term. Example ...
A term with no indeterminates and a polynomial with no indeterminates are called, respectively, a constant term and a constant polynomial. [b] The degree of a constant term and of a nonzero constant polynomial is 0. The degree of the zero polynomial 0 (which has no terms at all) is generally treated as not defined (but see below).