enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for ⁡ >, and its analytic continuation elsewhere.

  3. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.

  4. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    These are called its trivial zeros. The zeta function is also zero for other values of s, which are called nontrivial zeros. The Riemann hypothesis is concerned with the locations of these nontrivial zeros, and states that: The real part of every nontrivial zero of the Riemann zeta function is ⁠ 1 / 2 ⁠.

  5. List of zeta functions - Wikipedia

    en.wikipedia.org/wiki/List_of_zeta_functions

    Riemann zeta function, the archetypal example; Ruelle zeta function; Selberg zeta function of a Riemann surface; Shimizu L-function; Shintani zeta function; Subgroup zeta function; Witten zeta function of a Lie group; Zeta function of an incidence algebra, a function that maps every interval of a poset to the constant value 1. Despite not ...

  6. Analytic number theory - Wikipedia

    en.wikipedia.org/wiki/Analytic_number_theory

    In 1859 Bernhard Riemann used complex analysis and a special meromorphic function now known as the Riemann zeta function to derive an analytic expression for the number of primes less than or equal to a real number x. Remarkably, the main term in Riemann's formula was exactly the above integral, lending substantial weight to Gauss's conjecture.

  7. Odlyzko–Schönhage algorithm - Wikipedia

    en.wikipedia.org/wiki/Odlyzko–Schönhage_algorithm

    Gourdon (2004), The 10 13 first zeros of the Riemann Zeta function, and zeros computation at very large height; Odlyzko, A. (1992), The 10 20-th zero of the Riemann zeta function and 175 million of its neighbors This unpublished book describes the implementation of the algorithm and discusses the results in detail.

  8. Generalized Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Generalized_Riemann_hypothesis

    The Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function.

  9. Zeta distribution - Wikipedia

    en.wikipedia.org/wiki/Zeta_distribution

    where ζ(s) is the Riemann zeta function (which is undefined for s = 1). The multiplicities of distinct prime factors of X are independent random variables. The Riemann zeta function being the sum of all terms for positive integer k, it appears thus as the normalization of the Zipf distribution. The terms "Zipf distribution" and the "zeta ...