enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Array (data structure) - Wikipedia

    en.wikipedia.org/wiki/Array_(data_structure)

    Thus, if the array is seen as a function on a set of possible index combinations, it is the dimension of the space of which its domain is a discrete subset. Thus a one-dimensional array is a list of data, a two-dimensional array is a rectangle of data, [12] a three-dimensional array a block of data, etc.

  3. Array (data type) - Wikipedia

    en.wikipedia.org/wiki/Array_(data_type)

    This representation for multi-dimensional arrays is quite prevalent in C and C++ software. However, C and C++ will use a linear indexing formula for multi-dimensional arrays that are declared with compile time constant size, e.g. by int A[10][20] or int A[m][n], instead of the traditional int **A. [8] The C99 standard introduced Variable Length ...

  4. Row- and column-major order - Wikipedia

    en.wikipedia.org/wiki/Row-_and_column-major_order

    More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.

  5. Comparison of programming languages (array) - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_programming...

    For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x)

  6. Index notation - Wikipedia

    en.wikipedia.org/wiki/Index_notation

    Things become more interesting when we consider arrays with more than one index, for example, a two-dimensional table. We have three possibilities: make the two-dimensional array one-dimensional by computing a single index from the two; consider a one-dimensional array where each element is another one-dimensional array, i.e. an array of arrays

  7. Array programming - Wikipedia

    en.wikipedia.org/wiki/Array_programming

    Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).

  8. Array slicing - Wikipedia

    en.wikipedia.org/wiki/Array_slicing

    A = round (rand (3, 4, 5) * 10) % 3x4x5 three-dimensional or cubic array > A (:,:, 3) % 3x4 two-dimensional array along first and second dimensions ans = 8 3 5 7 8 9 1 4 4 4 2 5 > A (:, 2: 3, 3) % 3x2 two-dimensional array along first and second dimensions ans = 3 5 9 1 4 2 > A (2: end,:, 3) % 2x4 two-dimensional array using the 'end' keyword ...

  9. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    However, we can compute it much faster in a bottom-up fashion if we store path costs in a two-dimensional array q[i, j] rather than using a function. This avoids recomputation; all the values needed for array q[i, j] are computed ahead of time only once.