Search results
Results from the WOW.Com Content Network
The relationship between negative numbers, positive numbers, and zero is often expressed in the form of a number line: . The number line. Numbers appearing farther to the right on this line are greater, while numbers appearing farther to the left are lesser.
Negative numbers: Real numbers that are less than zero. Because zero itself has no sign, neither the positive numbers nor the negative numbers include zero. When zero is a possibility, the following terms are often used: Non-negative numbers: Real numbers that are greater than or equal to zero. Thus a non-negative number is either zero or positive.
Print/export Download as PDF; Printable version; In other projects Wikidata item; ... Less than Zero, a 2005 album by LA Symphony; Other meanings
A number is non-positive if it is less than or equal to zero. When 0 is said to be both positive and negative, [citation needed] modified phrases are used to refer to the sign of a number: A number is strictly positive if it is greater than zero. A number is strictly negative if it is less than zero. A number is positive if it is greater than ...
The less-than sign is a mathematical symbol that denotes an inequality between two values. The widely adopted form of two equal-length strokes connecting in an acute angle at the left, <, has been found in documents dated as far back as the 1560s.
Percentages greater than 100 or less than zero are treated in the same way, e.g. 311% equals 311/100, and −27% equals −27/100. The related concept of permille or parts per thousand (ppt) has an implied denominator of 1000, while the more general parts-per notation , as in 75 parts per million (ppm), means that the proportion is 75/1,000,000.
The former statement says that for any natural number n, if x is less than n then x is less than zero. The latter statement says that if there exists some natural number n such that x is less than n, then x is less than zero. Both statements are false. The former statement doesn't hold for n=2, because x=1 is less than n, but not less
An integer is positive if it is greater than zero, and negative if it is less than zero. Zero is defined as neither negative nor positive. The ordering of integers is compatible with the algebraic operations in the following way: If a < b and c < d, then a + c < b + d; If a < b and 0 < c, then ac < bc