Search results
Results from the WOW.Com Content Network
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Angle-based special right triangles are specified by the relationships of the angles of which the triangle is composed. The angles of these triangles are such that the larger (right) angle, which is 90 degrees or π 2 radians, is equal to the sum of the other two angles. The side lengths are generally deduced from the basis of the unit ...
In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn . Many writers begin the sequence with 0 and 1, although some authors start it from 1 and 1 [1][2] and some (as did Fibonacci) from 1 ...
The partial sums of the series 1 + 2 + 3 + 4 + 5 + 6 + ⋯ are 1, 3, 6, 10, 15, etc.The nth partial sum is given by a simple formula: = = (+). This equation was known ...
The Rhind Mathematical Papyrus, [1][2] an ancient Egyptian mathematical work, includes a mathematical table for converting rational numbers of the form 2/ n into Egyptian fractions (sums of distinct unit fractions), the form the Egyptians used to write fractional numbers. The text describes the representation of 50 rational numbers.
Illustration of the poem from the 1901 Book of Nursery Rhymes. This is one of many counting-out rhymes. It was first recorded in Mother Goose's Melody around 1765. Like most versions until the late 19th century, it had only the first stanza and dealt with a hare, not a fish, with the words:
1/2 + 1/4 + 1/8 + 1/16 + ⋯. First six summands drawn as portions of a square. The geometric series on the real line. In mathematics, the infinite series 1 2 + 1 4 + 1 8 + 1 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation ...
The Richter scale [1] (/ ˈ r ɪ k t ər /), also called the Richter magnitude scale, Richter's magnitude scale, and the Gutenberg–Richter scale, [2] is a measure of the strength of earthquakes, developed by Charles Richter in collaboration with Beno Gutenberg, and presented in Richter's landmark 1935 paper, where he called it the "magnitude scale". [3]