enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensors in curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Tensors_in_curvilinear...

    Let r(x) be the position vector of the point x with respect to the origin of the coordinate system. The notation can be simplified by noting that x = r(x). At each point we can construct a small line element dx. The square of the length of the line element is the scalar product dx • dx and is called the metric of the space.

  3. Voigt notation - Wikipedia

    en.wikipedia.org/wiki/Voigt_notation

    In mathematics, Voigt notation or Voigt form in multilinear algebra is a way to represent a symmetric tensor by reducing its order. [1] There are a few variants and associated names for this idea: Mandel notation, Mandel–Voigt notation and Nye notation are others found.

  4. Tidal tensor - Wikipedia

    en.wikipedia.org/wiki/Tidal_tensor

    To calculate the differential accelerations, the results are to be multiplied by G.) Let us adopt the frame in polar coordinates for our three-dimensional Euclidean space, and consider infinitesimal displacements in the radial and azimuthal directions, ∂ r , ∂ θ , {\displaystyle \partial _{r},\partial _{\theta },} and ∂ ϕ {\displaystyle ...

  5. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    The tensors are classified according to their type (n, m), where n is the number of contravariant indices, m is the number of covariant indices, and n + m gives the total order of the tensor. For example, a bilinear form is the same thing as a (0, 2)-tensor; an inner product is an example of a (0, 2)-tensor, but not all (0, 2)-tensors are inner ...

  6. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Here are some formulas for conformal changes in tensors associated with the metric. (Quantities marked with a tilde will be associated with g ~ {\displaystyle {\tilde {g}}} , while those unmarked with such will be associated with g {\displaystyle g} .)

  7. Tensor algebra - Wikipedia

    en.wikipedia.org/wiki/Tensor_algebra

    In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...

  8. Tensor derivative (continuum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Tensor_derivative...

    The derivatives of scalars, vectors, and second-order tensors with respect to second-order tensors are of considerable use in continuum mechanics. These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of algorithms for numerical simulations. [1]

  9. Tensor contraction - Wikipedia

    en.wikipedia.org/wiki/Tensor_contraction

    In multilinear algebra, a tensor contraction is an operation on a tensor that arises from the canonical pairing of a vector space and its dual.In components, it is expressed as a sum of products of scalar components of the tensor(s) caused by applying the summation convention to a pair of dummy indices that are bound to each other in an expression.