Search results
Results from the WOW.Com Content Network
In practical terms, having an essentially self-adjoint operator is almost as good as having a self-adjoint operator, since we merely need to take the closure to obtain a self-adjoint operator. In physics, the term Hermitian refers to symmetric as well as self-adjoint operators alike. The subtle difference between the two is generally overlooked.
The Stone–von Neumann theorem generalizes Stone's theorem to a pair of self-adjoint operators, (,), satisfying the canonical commutation relation, and shows that these are all unitarily equivalent to the position operator and momentum operator on ().
Linear Operators is a three-volume textbook on the theory of linear operators, written by Nelson Dunford and Jacob T. Schwartz. The three volumes are (I) General Theory; (II) Spectral Theory, Self Adjoint Operators in Hilbert Space; and (III) Spectral Operators. The first volume was published in 1958, the second in 1963, and the third in 1971.
An operator that has a unique self-adjoint extension is said to be essentially self-adjoint; equivalently, an operator is essentially self-adjoint if its closure (the operator whose graph is the closure of the graph of ) is self-adjoint. In general, a symmetric operator could have many self-adjoint extensions or none at all.
The Helffer–Sjöstrand formula is a mathematical tool used in spectral theory and functional analysis to represent functions of self-adjoint operators.Named after Bernard Helffer and Johannes Sjöstrand, this formula provides a way to calculate functions of operators without requiring the operator to have a simple or explicitly known spectrum.
Download as PDF; Printable version; ... an element of a *-algebra is called self-adjoint if it is the same as its ... Self-adjoint matrix; Self-adjoint operator; Notes
A compact operator K on H is symmetrizable if there is a bounded self-adjoint operator S on H such that S is positive with trivial kernel, i.e. (Sx,x) > 0 for all non-zero x, and SK is self-adjoint: =. In many applications S is also compact. The operator S defines a new inner product on H
Many authors define a positive operator to be a self-adjoint (or at least symmetric) non-negative operator. We show below that for a complex Hilbert space the self adjointness follows automatically from non-negativity. For a real Hilbert space non-negativity does not imply self adjointness.