enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Manfredo do Carmo - Wikipedia

    en.wikipedia.org/wiki/Manfredo_do_Carmo

    Do Carmo's main research interests were Riemannian geometry and the differential geometry of surfaces. [3]In particular, he worked on rigidity and convexity of isometric immersions, [26] [27] stability of hypersurfaces [28] [29] and of minimal surfaces, [30] [31] topology of manifolds, [32] isoperimetric problems, [33] minimal submanifolds of a sphere, [34] [35] and manifolds of constant mean ...

  3. Gauss–Codazzi equations - Wikipedia

    en.wikipedia.org/wiki/Gauss–Codazzi_equations

    In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Weingarten-Mainardi equations or Gauss–Peterson–Codazzi formulas [1]) are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold.

  4. Riemannian connection on a surface - Wikipedia

    en.wikipedia.org/wiki/Riemannian_connection_on_a...

    The classical nineteenth century approach to the differential geometry of surfaces, due in large part to Carl Friedrich Gauss, has been reworked in this modern framework, which provides the natural setting for the classical theory of the moving frame as well as the Riemannian geometry of higher-dimensional Riemannian manifolds.

  5. Differential geometry - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry

    Differential geometry is also indispensable in the study of gravitational lensing and black holes. Differential forms are used in the study of electromagnetism. Differential geometry has applications to both Lagrangian mechanics and Hamiltonian mechanics. Symplectic manifolds in particular can be used to study Hamiltonian systems.

  6. Mathematical Models (Fischer) - Wikipedia

    en.wikipedia.org/wiki/Mathematical_Models_(Fischer)

    Wire and plaster models illustrating the differential geometry and curvature of curves and surfaces, including surfaces of revolution, Dupin cyclides, helicoids, and minimal surfaces including the Enneper surface, with commentary by M. P. do Carmo, G. Fischer, U. Pinkall, H. and Reckziegel. [1] [3]

  7. Second fundamental form - Wikipedia

    en.wikipedia.org/wiki/Second_fundamental_form

    where is the Gauss map, and the differential of regarded as a vector-valued differential form, and the brackets denote the metric tensor of Euclidean space. More generally, on a Riemannian manifold, the second fundamental form is an equivalent way to describe the shape operator (denoted by S ) of a hypersurface,

  8. Bonnet theorem - Wikipedia

    en.wikipedia.org/wiki/Bonnet_theorem

    In the mathematical field of differential geometry, the fundamental theorem of surface theory deals with the problem of prescribing the geometric data of a submanifold of Euclidean space. Originally proved by Pierre Ossian Bonnet in 1867, it has since been extended to higher dimensions and non-Euclidean contexts.

  9. Beltrami's theorem - Wikipedia

    en.wikipedia.org/wiki/Beltrami's_theorem

    In the mathematical field of differential geometry, any (pseudo-)Riemannian metric determines a certain class of paths known as geodesics. Beltrami's theorem, named for Italian mathematician Eugenio Beltrami, is a result on the inverse problem of determining a (pseudo-)Riemannian metric from its geodesics.