Search results
Results from the WOW.Com Content Network
In physics, Green's theorem finds many applications. One is solving two-dimensional flow integrals, stating that the sum of fluid outflowing from a volume is equal to the total outflow summed about an enclosing area.
Green's functions may be categorized, by the type of boundary conditions satisfied, by a Green's function number. Also, Green's functions in general are distributions, not necessarily functions of a real variable. Green's functions are also useful tools in solving wave equations and diffusion equations.
In quantum field theory, correlation functions, often referred to as correlators or Green's functions, are vacuum expectation values of time-ordered products of field operators. They are a key object of study in quantum field theory where they can be used to calculate various observables such as S-matrix elements.
In many-body theory, the term Green's function (or Green function) is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators. The name comes from the Green's functions used to solve inhomogeneous differential equations, to which they are loosely ...
Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in order to determine the potential function. Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation ...
This identity is derived from the divergence theorem applied to the vector field F = ψ ∇φ while using an extension of the product rule that ∇ ⋅ (ψ X) = ∇ψ ⋅X + ψ ∇⋅X: Let φ and ψ be scalar functions defined on some region U ⊂ R d, and suppose that φ is twice continuously differentiable, and ψ is once continuously differentiable.
The main mathematical object in the Keldysh formalism is the non-equilibrium Green's function (NEGF), which is a two-point function of particle fields. In this way, it resembles the Matsubara formalism , which is based on equilibrium Green functions in imaginary-time and treats only equilibrium systems.
In mathematics, Green formula may refer to: Green's theorem in integral calculus; Green's identities in vector calculus; Green's function in differential equations;