Search results
Results from the WOW.Com Content Network
Many plants lose much of the remaining energy on growing roots. Most crop plants store ~0.25% to 0.5% of the sunlight in the product (corn kernels, potato starch, etc.). Photosynthesis increases linearly with light intensity at low intensity, but at higher intensity this is no longer the case (see Photosynthesis-irradiance curve). Above about ...
Herbivores and carnivores are examples of organisms that obtain carbon and electrons or hydrogen from living organic matter. Chemoorganotrophs are organisms which use the chemical energy in organic compounds as their energy source and obtain electrons or hydrogen from the organic compounds, including sugars (i.e. glucose), fats and proteins. [2]
Photosynthetic carbohydrate synthesis in plants and certain bacteria is an anabolic process that produces glucose, cellulose, starch, lipids, and proteins from CO 2. [6] It uses the energy produced from the light-driven reactions of photosynthesis, and creates the precursors to these large molecules via carbon assimilation in the photosynthetic ...
For example, ligands such as hormones that bind to and activate receptor proteins are termed cofactors or coactivators, whereas molecules that inhibit receptor proteins are termed corepressors. One such example is the G protein-coupled receptor family of receptors, which are frequently found in sensory neurons.
Photosystem II (of cyanobacteria and green plants) is composed of around 20 subunits (depending on the organism) as well as other accessory, light-harvesting proteins. Each photosystem II contains at least 99 cofactors: 35 chlorophyll a, 12 beta-carotene , two pheophytin , two plastoquinone , two heme , one bicarbonate, 20 lipids, the Mn
Lipids (oleaginous) are chiefly fatty acid esters, and are the basic building blocks of biological membranes. Another biological role is energy storage (e.g., triglycerides). Most lipids consist of a polar or hydrophilic head (typically glycerol) and one to three non polar or hydrophobic fatty acid tails, and therefore they are amphiphilic.
Through lipoic acid as a cofactor respectively the degree of lipoylation, mtFASII has an influence on mitochondrial enzyme complexes in energy metabolism, such as the pyruvate dehydrogenase complex, the α-ketoglutarate dehydrogenase complex, the BCKDH complex and the glycine cleavage system (GCS), among others.
Lipid metabolism is the synthesis and degradation of lipids in cells, involving the breakdown and storage of fats for energy and the synthesis of structural and functional lipids, such as those involved in the construction of cell membranes. In animals, these fats are obtained from food and are synthesized by the liver. [1]