Search results
Results from the WOW.Com Content Network
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
In Python, functions are first-class objects that can be created and passed around dynamically. Python's limited support for anonymous functions is the lambda construct. An example is the anonymous function which squares its input, called with the argument of 5:
In Python, == compares by value. Python's is operator may be used to compare object identities (comparison by reference), and comparisons may be chained—for example, a <= b <= c. Python uses and, or, and not as Boolean operators. Python has a type of expression named a list comprehension, and a more general expression named a generator ...
Cubic Hermite splines are typically used for interpolation of numeric data specified at given argument values ,, …,, to obtain a continuous function. The data should consist of the desired function value and derivative at each . (If only the values are provided, the derivatives must be estimated from them.)
The first term is the objective function from ordinary least squares (OLS) regression, corresponding to the residual sum of squares. The second term is a regularization term, not present in OLS, which penalizes large values. As a smooth finite dimensional problem is considered and it is possible to apply standard calculus tools.
Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).
The function was tabulated by Vera Faddeeva and N. N. Terentyev in 1954. [8] It appears as nameless function w(z) in Abramowitz and Stegun (1964), formula 7.1.3. The name Faddeeva function was apparently introduced by G. P. M. Poppe and C. M. J. Wijers in 1990; [9] [better source needed] previously, it was known as Kramp's function (probably after Christian Kramp).