Search results
Results from the WOW.Com Content Network
[4]: 114 A DataFrame is a 2-dimensional data structure of rows and columns, similar to a spreadsheet, and analogous to a Python dictionary mapping column names (keys) to Series (values), with each Series sharing an index. [4]: 115 DataFrames can be concatenated together or "merged" on columns or indices in a manner similar to joins in SQL.
In analogy with relational databases, a column family is as a "table", each key-value pair being a "row". Each column is a tuple consisting of a column name, a value, and a timestamp. In a relational database table, this data would be grouped together within a table with other non-related data. Two types of column families exist:
A GROUP BY statement in SQL specifies that a SQL SELECT statement partitions result rows into groups, based on their values in one or several columns. Typically, grouping is used to apply some sort of aggregate function for each group. [1] [2] The result of a query using a GROUP BY statement contains one row for
The two most common representations are column-oriented (columnar format) and row-oriented (row format). [ 1 ] [ 2 ] The choice of data orientation is a trade-off and an architectural decision in databases , query engines, and numerical simulations. [ 1 ]
If an intersection (in the United States) is represented in data by the zip code (5-digit number) and two street names (strings of text), bugs may appear when a city where streets intersect multiple times is encountered. While this example may be oversimplified, restructuring of data is a fairly common problem in software engineering, either to ...
Formally, a "database" refers to a set of related data accessed through the use of a "database management system" (DBMS), which is an integrated set of computer software that allows users to interact with one or more databases and provides access to all of the data contained in the database (although restrictions may exist that limit access to particular data).
An entity–attribute–value model (EAV) is a data model optimized for the space-efficient storage of sparse—or ad-hoc—property or data values, intended for situations where runtime usage patterns are arbitrary, subject to user variation, or otherwise unforeseeable using a fixed design.
In statistics, missing data, or missing values, occur when no data value is stored for the variable in an observation.Missing data are a common occurrence and can have a significant effect on the conclusions that can be drawn from the data.