Search results
Results from the WOW.Com Content Network
Plot of the logarithmic integral function li(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D. In mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance.
The following is a list of integrals (antiderivative functions) of logarithmic functions. For a complete list of integral functions, see list of integrals. Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity.
A. Dieckmann, Table of Integrals (Elliptic Functions, Square Roots, Inverse Tangents and More Exotic Functions): Indefinite Integrals Definite Integrals; Math Major: A Table of Integrals; O'Brien, Francis J. Jr. "500 Integrals of Elementary and Special Functions". Derived integrals of exponential, logarithmic functions and special functions.
These are the three main logarithm laws/rules/principles, [3] from which the other properties listed above can be proven. Each of these logarithm properties correspond to their respective exponent law, and their derivations/proofs will hinge on those facts. There are multiple ways to derive/prove each logarithm law – this is just one possible ...
The natural logarithm of t can be defined as the definite integral: ln t = ∫ 1 t 1 x d x . {\displaystyle \ln t=\int _{1}^{t}{\frac {1}{x}}\,dx.} This definition has the advantage that it does not rely on the exponential function or any trigonometric functions; the definition is in terms of an integral of a simple reciprocal.
In number theory, Skewes's number is the smallest natural number for which the prime-counting function exceeds the logarithmic integral function (). It is named for the South African mathematician Stanley Skewes who first computed an upper bound on its value.
Ramanujan–Soldner constant as seen on the logarithmic integral function. In mathematics, the Ramanujan–Soldner constant (also called the Soldner constant) is a mathematical constant defined as the unique positive zero of the logarithmic integral function. It is named after Srinivasa Ramanujan and Johann Georg von Soldner.
The first term li(x) is the usual logarithmic integral function; the expression li(x ρ) in the second term should be considered as Ei(ρ log x), where Ei is the analytic continuation of the exponential integral function from negative reals to the complex plane with branch cut along the positive reals. The final integral is equal to the series ...