enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Positive operator - Wikipedia

    en.wikipedia.org/wiki/Positive_operator

    The operator is said to be positive-definite, and written >, if , >, for all ⁡ {}. [ 1 ] Many authors define a positive operator A {\displaystyle A} to be a self-adjoint (or at least symmetric) non-negative operator.

  3. Choi's theorem on completely positive maps - Wikipedia

    en.wikipedia.org/wiki/Choi's_theorem_on...

    where λ i are real numbers, the eigenvalues of C Φ, and each V i corresponds to an eigenvector of C Φ. Unlike the completely positive case, C Φ may fail to be positive. Since Hermitian matrices do not admit factorizations of the form B*B in general, the Kraus representation is no longer possible for a given Φ.

  4. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    If A is Hermitian and Ax, x ≥ 0 for every x, then A is called 'nonnegative', written A ≥ 0; if equality holds only when x = 0, then A is called 'positive'. The set of self adjoint operators admits a partial order, in which A ≥ B if A − B ≥ 0. If A has the form B*B for some B, then A is nonnegative; if B is invertible, then A is positive.

  5. Normal operator - Wikipedia

    en.wikipedia.org/wiki/Normal_operator

    Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are unitary operators: N* = N −1; Hermitian operators (i.e., self-adjoint operators): N* = N; skew-Hermitian operators: N* = −N; positive operators: N = MM* for some M (so N is self-adjoint).

  6. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...

  7. Completely positive map - Wikipedia

    en.wikipedia.org/wiki/Completely_positive_map

    Positive maps are monotone, i.e. () for all self-adjoint elements ,. Since ‖ ‖ ‖ ‖ for all self-adjoint elements , every positive map is automatically continuous with respect to the C*-norms and its operator norm equals ‖ ‖.

  8. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix is symmetric in the case the inner product is real-valued; it is Hermitian in the general, complex case by definition of an inner product. The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can ...

  9. Positive-definite kernel - Wikipedia

    en.wikipedia.org/wiki/Positive-definite_kernel

    In operator theory, a branch of mathematics, a positive-definite kernel is a generalization of a positive-definite function or a positive-definite matrix. It was first introduced by James Mercer in the early 20th century, in the context of solving integral operator equations. Since then, positive-definite functions and their various analogues ...