Search results
Results from the WOW.Com Content Network
The parallel sides are called the bases of the trapezoid. The other two sides are called the legs (or the lateral sides) if they are not parallel; otherwise, the trapezoid is a parallelogram, and there are two pairs of bases. A scalene trapezoid is a trapezoid with no sides of equal measure, [3] in contrast with the special cases below.
Any non-self-crossing quadrilateral with exactly one axis of symmetry must be either an isosceles trapezoid or a kite. [5] However, if crossings are allowed, the set of symmetric quadrilaterals must be expanded to include also the crossed isosceles trapezoids, crossed quadrilaterals in which the crossed sides are of equal length and the other sides are parallel, and the antiparallelograms ...
The centers of four squares all constructed either internally or externally on the sides of a parallelogram are the vertices of a square. [8] If two lines parallel to sides of a parallelogram are constructed concurrent to a diagonal, then the parallelograms formed on opposite sides of that diagonal are equal in area. [8]
These segments are called its edges or sides, and the points where two of the edges meet are the polygon's vertices (singular: vertex) or corners. The word polygon comes from Late Latin polygōnum (a noun), from Greek πολύγωνον ( polygōnon/polugōnon ), noun use of neuter of πολύγωνος ( polygōnos/polugōnos , the masculine ...
The formula for the area of a trapezoid can be simplified using Pitot's theorem to get a formula for the area of a tangential trapezoid. If the bases have lengths a, b, and any one of the other two sides has length c, then the area K is given by the formula [2] (This formula can be used only in cases where the bases are parallel.)
The orange and green quadrilaterals are congruent; the blue is not congruent to them. All three have the same perimeter and area. (The ordering of the sides of the blue quadrilateral is "mixed" which results in two of the interior angles and one of the diagonals not being congruent.)
For any isosceles trapezoid, tangent lines to the circumscribing circle at its four vertices form the four sides of a kite. This correspondence can also be seen as an example of polar reciprocation , a general method for corresponding points with lines and vice versa given a fixed circle.
A convex quadrilateral is tangential if and only if opposite sides have equal sums. Tangential trapezoid: a trapezoid where the four sides are tangents to an inscribed circle. Cyclic quadrilateral: the four vertices lie on a circumscribed circle. A convex quadrilateral is cyclic if and only if opposite angles sum to 180°.