enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. General-purpose computing on graphics processing units

    en.wikipedia.org/wiki/General-purpose_computing...

    Alea GPU, [19] created by QuantAlea, [20] introduces native GPU computing capabilities for the Microsoft .NET languages F# [21] and C#. Alea GPU also provides a simplified GPU programming model based on GPU parallel-for and parallel aggregate using delegates and automatic memory management. [22]

  3. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    TensorFlow serves as a core platform and library for machine learning. TensorFlow's APIs use Keras to allow users to make their own machine-learning models. [33] [43] In addition to building and training their model, TensorFlow can also help load the data to train the model, and deploy it using TensorFlow Serving. [44]

  4. Tensor Processing Unit - Wikipedia

    en.wikipedia.org/wiki/Tensor_Processing_Unit

    Tensor Processing Unit (TPU) is an AI accelerator application-specific integrated circuit (ASIC) developed by Google for neural network machine learning, using Google's own TensorFlow software. [2] Google began using TPUs internally in 2015, and in 2018 made them available for third-party use, both as part of its cloud infrastructure and by ...

  5. Google JAX - Wikipedia

    en.wikipedia.org/wiki/Google_JAX

    JAX is a machine learning framework for transforming numerical functions developed by Google with some contributions from Nvidia. [2] [3] [4] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and OpenXLA's XLA (Accelerated Linear Algebra).

  6. AI accelerator - Wikipedia

    en.wikipedia.org/wiki/AI_accelerator

    An AI accelerator, deep learning processor or neural processing unit (NPU) is a class of specialized hardware accelerator [1] or computer system [2] [3] designed to accelerate artificial intelligence (AI) and machine learning applications, including artificial neural networks and computer vision.

  7. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    PyTorch Tensors are similar to NumPy Arrays, but can also be operated on a CUDA-capable NVIDIA GPU. PyTorch has also been developing support for other GPU platforms, for example, AMD's ROCm [27] and Apple's Metal Framework. [28] PyTorch supports various sub-types of Tensors. [29]

  8. MLIR (software) - Wikipedia

    en.wikipedia.org/wiki/MLIR_(software)

    MLIR (Multi-Level Intermediate Representation) is a unifying software framework for compiler development. [1] MLIR can make optimal use of a variety of computing platforms such as central processing units (CPUs), graphics processing units (GPUs), data processing units (DPUs), Tensor Processing Units (TPUs), field-programmable gate arrays (FPGAs), artificial intelligence (AI) application ...

  9. PlaidML - Wikipedia

    en.wikipedia.org/wiki/PlaidML

    PlaidML is a portable tensor compiler.Tensor compilers bridge the gap between the universal mathematical descriptions of deep learning operations, such as convolution, and the platform and chip-specific code needed to perform those operations with good performance.