Search results
Results from the WOW.Com Content Network
It is also called propositional logic, [2] statement logic, [1] sentential calculus, [3] sentential logic, [4] [1] or sometimes zeroth-order logic. [ b ] [ 6 ] [ 7 ] [ 8 ] Sometimes, it is called first-order propositional logic [ 9 ] to contrast it with System F , but it should not be confused with first-order logic .
In propositional logic, the commutativity of conjunction is a valid argument form and truth-functional tautology. It is considered to be a law of classical logic. It is the principle that the conjuncts of a logical conjunction may switch places with each other, while preserving the truth-value of the resulting proposition. [1]
Classical propositional calculus is the standard propositional logic. Its intended semantics is bivalent and its main property is that it is strongly complete, otherwise said that whenever a formula semantically follows from a set of premises, it also follows from that set syntactically. Many different equivalent complete axiom systems have ...
Conjunction introduction (often abbreviated simply as conjunction and also called and introduction or adjunction) [1] [2] [3] is a valid rule of inference of propositional logic. The rule makes it possible to introduce a conjunction into a logical proof .
In propositional logic, modus ponens (/ ˈ m oʊ d ə s ˈ p oʊ n ɛ n z /; MP), also known as modus ponendo ponens (from Latin 'mode that by affirming affirms'), [1] implication elimination, or affirming the antecedent, [2] is a deductive argument form and rule of inference. [3] It can be summarized as "P implies Q. P is true. Therefore, Q ...
In propositional logic, a propositional formula is a type of syntactic formula which is well formed. If the values of all variables in a propositional formula are given, it determines a unique truth value. A propositional formula may also be called a propositional expression, a sentence, [1] or a sentential formula.
Quantum logic has been proposed as the correct logic for propositional inference generally, most notably by the philosopher Hilary Putnam, at least at one point in his career. This thesis was an important ingredient in Putnam's 1968 paper " Is Logic Empirical? " in which he analysed the epistemological status of the rules of propositional logic.
In propositional logic, material implication [1] [2] is a valid rule of replacement that allows a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not- P {\displaystyle P} or Q {\displaystyle Q} and that either form can replace the other in ...