Search results
Results from the WOW.Com Content Network
The universe will become extremely dark after the last stars burn out. Even so, there can still be occasional light in the universe. One of the ways the universe can be illuminated is if two carbon–oxygen white dwarfs with a combined mass of more than the Chandrasekhar limit of about 1.4 solar masses happen
A tachyon (/ ˈ t æ k i ɒ n /) or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are inconsistent with the known laws of physics. [1] [2] If such
The angles of a triangle sum to less than 180 degrees, and lines that do not meet are never equidistant; they have a point of least distance and otherwise grow apart. The geometry of such a universe is hyperbolic. [11] Even without dark energy, a negatively curved universe expands forever, with gravity negligibly slowing the rate of expansion.
Eventually, the vacuum of space will decay, and things will fall apart—in a zillion years. Our universe is glued together by quantum fields, like the Higgs, which set much of our physics.
In physical cosmology, the Big Rip is a hypothetical cosmological model concerning the ultimate fate of the universe, in which the matter of the universe, from stars and galaxies to atoms and subatomic particles, and even spacetime itself, is progressively torn apart by the expansion of the universe at a certain time in the future, until distances between particles will infinitely increase.
In physics, a tachyonic field, or simply tachyon, is a quantum field with an imaginary mass. [1] Although tachyonic particles (particles that move faster than light) are a purely hypothetical concept that violate a number of essential physical principles, at least one field with imaginary mass, the Higgs field, is believed to exist.
The history of the universe after inflation but before a time of about 1 second is largely unknown. [22] However, the universe is known to have been dominated by ultrarelativistic Standard Model particles, conventionally called radiation, by the time of neutrino decoupling at about 1 second. [23]
The particles created in this process (the final state) must each be less massive than the original, although the total mass of the system must be conserved. A particle is unstable if there is at least one allowed final state that it can decay into. Unstable particles will often have multiple ways of decaying, each with its own associated ...