enow.com Web Search

  1. Ads

    related to: examples of opposite numbers in algebra 1 quizlet questions

Search results

  1. Results from the WOW.Com Content Network
  2. Additive inverse - Wikipedia

    en.wikipedia.org/wiki/Additive_inverse

    In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]

  3. Opposite ring - Wikipedia

    en.wikipedia.org/wiki/Opposite_ring

    There are 4 different non-self-opposite rings out of the total number of 50 rings with unity [7] having 16 elements (37 [8] commutative and 13 [5] noncommutative). [6] They can be coupled in two pairs of rings opposite to each other in a pair, and necessarily with the same additive group, since an antiisomorphism of rings is an isomorphism of ...

  4. Anticommutative property - Wikipedia

    en.wikipedia.org/wiki/Anticommutative_property

    Subtraction is an anticommutative operation because commuting the operands of a − b gives b − a = −(a − b); for example, 2 − 10 = −(10 − 2) = −8. Another prominent example of an anticommutative operation is the Lie bracket.

  5. Inverse element - Wikipedia

    en.wikipedia.org/wiki/Inverse_element

    In mathematics, the concept of an inverse element generalises the concepts of opposite (−x) and reciprocal (1/x) of numbers.. Given an operation denoted here ∗, and an identity element denoted e, if x ∗ y = e, one says that x is a left inverse of y, and that y is a right inverse of x.

  6. Field (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Field_(mathematics)

    Informally, a field is a set, along with two operations defined on that set: an addition operation written as a + b, and a multiplication operation written as a ⋅ b, both of which behave similarly as they behave for rational numbers and real numbers, including the existence of an additive inverse −a for all elements a, and of a multiplicative inverse b −1 for every nonzero element b.

  7. Union (set theory) - Wikipedia

    en.wikipedia.org/wiki/Union_(set_theory)

    For example, the union of three sets A, B, and C contains all elements of A, all elements of B, and all elements of C, and nothing else. Thus, x is an element of A ∪ B ∪ C if and only if x is in at least one of A, B, and C. A finite union is the union of a finite number of sets; the phrase does not imply that the union set is a finite set ...

  8. Module (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Module_(mathematics)

    Hence when n = 1, R is an R-module, where the scalar multiplication is just ring multiplication. The case n = 0 yields the trivial R-module {0} consisting only of its identity element. Modules of this type are called free and if R has invariant basis number (e.g. any commutative ring or field) the number n is then the rank of the free module.

  9. Intersection (set theory) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(set_theory)

    Algebra of sets – Identities and relationships involving sets; Cardinality – Definition of the number of elements in a set; Complement – Set of the elements not in a given subset; Intersection (Euclidean geometry) – Shape formed from points common to other shapes

  1. Ads

    related to: examples of opposite numbers in algebra 1 quizlet questions