Search results
Results from the WOW.Com Content Network
Polymeric nanoparticles may also contain beneficial controlled release mechanisms. Polymer Branch. Nanoparticles made from natural polymers that are biodegradable have the abilities to target specific organs and tissues in the body, to carry DNA for gene therapy, and to deliver larger molecules such as proteins, peptides, and even genes. [7]
These nanoparticles would be loaded with drugs and targeted to specific parts of the body where there is solely diseased tissue, thereby avoiding interaction with healthy tissue. The goal of a targeted drug delivery system is to prolong, localize, target and have a protected drug interaction with the diseased tissue.
Polymeric nanoparticles are synthetic polymers with a size ranging from 10 to 100 nm. Common synthetic polymeric nanoparticles include polyacrylamide, [8] polyacrylate, [9] and chitosan. [10] Drug molecules can be incorporated either during or after polymerization.
A nanocapsule is a nanoscale shell made from a nontoxic polymer. They are vesicular systems made of a polymeric membrane which encapsulates an inner liquid core at the nanoscale. Nanocapsules have many uses, including promising medical applications for drug delivery, food enhancement, nutraceuticals, and for self-healing
Nanoparticles of natural polymers such as chitosan are commonly used adjuvants in modern vaccine formulations. [63] Ceria nanoparticles appear very promising for both enhancing vaccine responses and mitigating inflammation, as their adjuvanticity can be adjusted by modifying parameters such as size, crystallinity, surface state, and stoichiometry.
Hydrophilic polymers have the potential to be biocompatible and can be fabricated into a variety of forms which include polymer micelles, sol-gel mixtures, physical blends and crosslinked particles and nanoparticles. [4] Of special interest are stimuli-responsive polymers that respond to pH or
The energy applications of nanotechnology relates to using the small size of nanoparticles to store energy more efficiently. This promotes the use of renewable energy through green nanotechnology by generating, storing, and using energy without emitting harmful greenhouse gases such as carbon dioxide.
Nanoparticles have been used in drug delivery for applications such as diagnosis and treatment of diseases, with polymeric nanoparticles gaining significant traction as a carrier of drugs or biomolecules over the last few decades. [5] [6] [7] These structures are extremely small, having a diameter < 100 nm. [6]