Search results
Results from the WOW.Com Content Network
The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic except at zero and the negative integers, where it has simple poles. The gamma function has no zeros, so the reciprocal gamma function 1 / Γ(z) is an entire function.
In the shape-scale parametrization, X ~ Gamma(1, λ) has an exponential distribution with rate parameter 1/λ. If X ~ Gamma(ν/2, 2) (in the shape–scale parametrization), then X is identical to χ 2 (ν), the chi-squared distribution with ν degrees of freedom. Conversely, if Q ~ χ 2 (ν) and c is a positive constant, then cQ ~ Gamma(ν/2, 2c).
2.2 Exponential function. ... 7.2 Sum of reciprocal of factorials. 7.3 Trigonometry and ... is the gamma function. is a polygamma ...
The gamma function is an important special function in mathematics.Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general.
The sum of exponentials is a useful model in pharmacokinetics (chemical kinetics in general) for describing the concentration of a substance over time. The exponential terms correspond to first-order reactions, which in pharmacology corresponds to the number of modelled diffusion compartments. [2] [3]
In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
Repeated application of the recurrence relation for the lower incomplete gamma function leads to the power series expansion: [2] (,) = = (+) (+) = = (+ +). Given the rapid growth in absolute value of Γ(z + k) when k → ∞, and the fact that the reciprocal of Γ(z) is an entire function, the coefficients in the rightmost sum are well-defined, and locally the sum converges uniformly for all ...