enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electrolysis of water - Wikipedia

    en.wikipedia.org/wiki/Electrolysis_of_water

    It also requires thermal energy to balance the change in entropy of the reaction. Therefore, the process cannot proceed at constant temperature at electrical energy inputs below 286 kJ per mol if no external thermal energy is added. Since each mole of water requires two moles of electrons, and given that the Faraday constant F represents the ...

  3. Half-reaction - Wikipedia

    en.wikipedia.org/wiki/Half-reaction

    For oxidation-reduction reactions in acidic conditions, after balancing the atoms and oxidation numbers, one will need to add H + ions to balance the hydrogen ions in the half reaction. For oxidation-reduction reactions in basic conditions, after balancing the atoms and oxidation numbers, first treat it as an acidic solution and then add OH − ...

  4. Stefan problem - Wikipedia

    en.wikipedia.org/wiki/Stefan_problem

    This is an energy balance which defines the position of the moving interface. Note that this evolving boundary is an unknown (hyper-)surface; hence, Stefan problems are examples of free boundary problems. Analogous problems occur, for example, in the study of porous media flow, mathematical finance and crystal growth from monomer solutions. [1]

  5. Exothermic reaction - Wikipedia

    en.wikipedia.org/wiki/Exothermic_reaction

    An energy profile of an exothermic reaction. In an exothermic reaction, by definition, the enthalpy change has a negative value: ΔH = H products - H reactants < 0. where a larger value (the higher energy of the reactants) is subtracted from a smaller value (the lower energy of the products). For example, when hydrogen burns: 2H 2 (g) + O 2 (g ...

  6. Spontaneous process - Wikipedia

    en.wikipedia.org/wiki/Spontaneous_process

    In thermodynamics, a spontaneous process is a process which occurs without any external input to the system. A more technical definition is the time-evolution of a system in which it releases free energy and it moves to a lower, more thermodynamically stable energy state (closer to thermodynamic equilibrium).

  7. Equilibrium constant - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_constant

    An equilibrium constant is related to the standard Gibbs free energy change of reaction by Δ G ⊖ = − R T ln ⁡ K ⊖ , {\displaystyle \Delta G^{\ominus }=-RT\ln K^{\ominus },} where R is the universal gas constant , T is the absolute temperature (in kelvins ), and ln is the natural logarithm .

  8. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    The law distinguishes two principal forms of energy transfer, heat and thermodynamic work, that modify a thermodynamic system containing a constant amount of matter. The law also defines the internal energy of a system, an extensive property for taking account of the balance of heat and work in the system. Energy cannot be created or destroyed ...

  9. Enthalpy of neutralization - Wikipedia

    en.wikipedia.org/wiki/Enthalpy_of_neutralization

    It is defined as the energy released with the formation of 1 mole of water. When a reaction is carried out under standard conditions at the temperature of 298 K (25 degrees Celsius) and 1 atm of pressure and one mole of water is formed, the heat released by the reaction is called the standard enthalpy of neutralization (ΔH n ⊖).