Search results
Results from the WOW.Com Content Network
[45] [46] Newton's method, an iterative method to solve equations approximately, can also be used to calculate the logarithm, because its inverse function, the exponential function, can be computed efficiently. [47] Using look-up tables, CORDIC-like methods can be used to compute logarithms by using only the operations of addition and bit shifts.
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. The choice of unit generally indicates the type of quantity and the base of the ...
The capabilities of a modern scientific calculator include: Scientific notation; Floating-point decimal arithmetic; Logarithmic functions, using both base 10 and base e; Trigonometric functions (some including hyperbolic trigonometry) Exponential functions and roots beyond the square root; Quick access to constants such as π and e
The linear–log type of a semi-log graph, defined by a logarithmic scale on the x axis, and a linear scale on the y axis. Plotted lines are: y = 10 x (red), y = x (green), y = log(x) (blue). In science and engineering, a semi-log plot/graph or semi-logarithmic plot/graph has one axis on a logarithmic scale, the other on a linear scale.
In addition to the logarithmic scales, some slide rules have other mathematical functions encoded on other auxiliary scales. The most popular are trigonometric, usually sine and tangent, common logarithm (log 10) (for taking the log of a value on a multiplier scale), natural logarithm (ln) and exponential (e x) scales.
The logarithm of a complex number is thus a multi-valued function, because φ is multi-valued. Finally, the other exponential law =, which can be seen to hold for all integers k, together with Euler's formula, implies several trigonometric identities, as well as de Moivre's formula.
This relationship is true regardless of the base of the logarithmic or exponential function: If is normally distributed, then so is for any two positive numbers , . Likewise, if e Y {\displaystyle \ e^{Y}\ } is log-normally distributed, then so is a Y , {\displaystyle \ a^{Y}\ ,} where 0 < a ≠ 1 {\displaystyle 0<a\neq 1} .