Search results
Results from the WOW.Com Content Network
where r is the inradius and R is the circumradius of the triangle. Here the sign of the distances is taken to be negative if and only if the open line segment DX (X = F, G, H) lies completely outside the triangle. In the diagram, DF is negative and both DG and DH are positive. The theorem is named after Lazare Carnot (1753–1823).
Field of view is the area of the inspection captured on the camera’s imager. The size of the field of view and the size of the camera’s imager directly affect the image resolution (one determining factor in accuracy). Working distance is the distance between the back of the lens and the target object.
Carnot's theorem (inradius, circumradius), describing a property of the incircle and the circumcircle of a triangle; Carnot's theorem (conics), describing a relation between triangles and conic sections; Carnot's theorem (perpendiculars), describing a property of certain perpendiculars on triangle sides; In physics:
In computer vision, the motion field is an ideal representation of motion in three-dimensional space (3D) as it is projected onto a camera image. Given a simplified camera model, each point (,) in the image is the projection of some point in the 3D scene but the position of the projection of a fixed point in space can vary with time.
The visual field is measured by perimetry.This may be kinetic, where spots of light are shown on the white interior of a half sphere and slowly moved inwards until the observer sees them, or static, where the light spots are flashed at varying intensities at fixed locations in the sphere until detected by the subject.
Fuss' theorem gives a relation between the inradius r, the circumradius R and the distance x between the incenter I and the circumcenter O, for any bicentric quadrilateral. The relation is [1] [11] [22] + (+) =, or equivalently
In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).
Accordingly, as described below, the visual angle θ is the difference between two real (optical) directions in the field of view, while the perceived visual angle θ′, is the difference by which the directions of two viewed points from oneself appear to differ in the visual field.