Search results
Results from the WOW.Com Content Network
Context, Question, Rewrite, Answer, Answer_URL, Conversation_no, Turn_no, Conversation_source Further details are provided in the project's GitHub repository and respective Hugging Face dataset card. Question Answering 2021 [336] Anantha and Vakulenko et al. UnifiedQA Question-answer data Processed dataset Question Answering 2020 [337] Khashabi ...
Hugging Face, Inc. is an American company incorporated under the Delaware General Corporation Law [1] and based in New York City that develops computation tools for building applications using machine learning.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Generative Pre-trained Transformer 2 (GPT-2) is a large language model by OpenAI and the second in their foundational series of GPT models. GPT-2 was pre-trained on a dataset of 8 million web pages. [2] It was partially released in February 2019, followed by full release of the 1.5-billion-parameter model on November 5, 2019. [3] [4] [5]
Generative artificial intelligence (generative AI, GenAI, [1] or GAI) is a subset of artificial intelligence that uses generative models to produce text, images, videos, or other forms of data. [ 2 ] [ 3 ] [ 4 ] These models learn the underlying patterns and structures of their training data and use them to produce new data [ 5 ] [ 6 ] based on ...
GraphRAG with a knowledge graph combining access patterns for unstructured, structured, and mixed data GraphRAG [ 40 ] (coined by Microsoft Research ) is a technique that extends RAG with the use of a knowledge graph (usually, LLM-generated) to allow the model to connect disparate pieces of information, synthesize insights, and holistically ...
A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation.LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text.
For example, GPT-3, and its precursor GPT-2, [11] are auto-regressive neural language models that contain billions of parameters, BigGAN [12] and VQ-VAE [13] which are used for image generation that can have hundreds of millions of parameters, and Jukebox is a very large generative model for musical audio that contains billions of parameters.