Search results
Results from the WOW.Com Content Network
In addition to the descriptive steel grade naming system indicated above, within EN 10027-2 is defined a system for creating unique steel grade numbers. While less descriptive and intuitive than the grand names they are easier to tabulate and use in data processing applications.
The SAE steel grades system is a standard alloy numbering system (SAE J1086 – Numbering Metals and Alloys) for steel grades maintained by SAE International. In the 1930s and 1940s, the American Iron and Steel Institute (AISI) and SAE were both involved in efforts to standardize such a numbering system for steels. These efforts were similar ...
In the era of commercial wrought iron, blooms were slag-riddled iron castings poured in a bloomery before being worked into wrought iron. In the era of commercial steel, blooms are intermediate-stage pieces of steel produced by a first pass of rolling (in a blooming mill) that works the ingots down to a smaller cross-sectional area, but still greater than 36 in 2 (230 cm 2). [1]
Alloy steels divide into two groups: low and high alloy. The boundary between the two is disputed. Smith and Hashemi define the difference at 4.0%, [1]: 393 while Degarmo, et al., define it at 8.0%. [2]: 112 Most alloy steels are low-alloy.
Martensitic stainless steels can be high- or low-carbon steels built around the composition of iron, 12% up to 17% chromium, carbon from 0.10% (Type 410) up to 1.2% (Type 440C): [8] The chromium and carbon contents are balanced to have a martensitic structure.
Steel never turns into a liquid below this temperature. Pure Iron ('Steel' with 0% Carbon) starts to melt at 1,492 °C (2,718 °F), and is completely liquid upon reaching 1,539 °C (2,802 °F). Steel with 2.1% Carbon by weight begins melting at 1,130 °C (2,070 °F), and is completely molten upon reaching 1,315 °C (2,399 °F).
Ferritic stainless steel alloys are designated as part of the 400-series of stainless steels in the SAE steel grades numbering system. By comparison with austenitic stainless steels, these are less hardenable by cold working and less weldable, but more cost-effective due to the lower nickel content.
Abrasion resistant steel is a high-carbon alloy steel that is produced to resist wear and stress. There are several grades of abrasion resistant steel, including AR200, AR235, AR400, AR450, AR500 and AR600.