enow.com Web Search

  1. Ad

    related to: secant example geometry problems

Search results

  1. Results from the WOW.Com Content Network
  2. Secant line - Wikipedia

    en.wikipedia.org/wiki/Secant_line

    For example, if K is a set of 50 points arranged on a circle in the Euclidean plane, a line joining two of them would be a 2-secant (or bisecant) and a line passing through only one of them would be a 1-secant (or unisecant). A unisecant in this example need not be a tangent line to the circle.

  3. Intersecting secants theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_secants_theorem

    In Euclidean geometry, the intersecting secants theorem or just secant theorem describes the relation of line segments created by two intersecting secants and the ...

  4. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    Steiner used the power of a point for proofs of several statements on circles, for example: Determination of a circle, that intersects four circles by the same angle. [2] Solving the Problem of Apollonius; Construction of the Malfatti circles: [3] For a given triangle determine three circles, which touch each other and two sides of the triangle ...

  5. Tangent–secant theorem - Wikipedia

    en.wikipedia.org/wiki/Tangent–secant_theorem

    The tangent-secant theorem can be proven using similar triangles (see graphic). Like the intersecting chords theorem and the intersecting secants theorem, the tangent-secant theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle, namely, the power of point theorem.

  6. Chord (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chord_(geometry)

    If a chord were to be extended infinitely on both directions into a line, the object is a secant line. The perpendicular line passing through the chord's midpoint is called sagitta (Latin for "arrow"). More generally, a chord is a line segment joining two points on any curve, for instance, on an ellipse.

  7. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's Elements.

  8. Secant variety - Wikipedia

    en.wikipedia.org/wiki/Secant_variety

    A secant variety can be used to show the fact that a smooth projective curve can be embedded into the projective 3-space as follows. [2] Let be a smooth curve. Since the dimension of the secant variety S to C has dimension at most 3, if >, then there is a point p on that is not on S and so we have the projection from p to a hyperplane H, which gives the embedding :.

  9. Exsecant - Wikipedia

    en.wikipedia.org/wiki/Exsecant

    The word secant comes from Latin for "to cut", and a general secant line "cuts" a circle, intersecting it twice; this concept dates to antiquity and can be found in Book 3 of Euclid's Elements, as used e.g. in the intersecting secants theorem. 18th century sources in Latin called any non-tangential line segment external to a circle with one endpoint on the circumference a secans exterior.

  1. Ad

    related to: secant example geometry problems