Ad
related to: secant example geometry problemskutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
For example, if K is a set of 50 points arranged on a circle in the Euclidean plane, a line joining two of them would be a 2-secant (or bisecant) and a line passing through only one of them would be a 1-secant (or unisecant). A unisecant in this example need not be a tangent line to the circle.
In Euclidean geometry, the intersecting secants theorem or just secant theorem describes the relation of line segments created by two intersecting secants and the ...
Steiner used the power of a point for proofs of several statements on circles, for example: Determination of a circle, that intersects four circles by the same angle. [2] Solving the Problem of Apollonius; Construction of the Malfatti circles: [3] For a given triangle determine three circles, which touch each other and two sides of the triangle ...
The tangent-secant theorem can be proven using similar triangles (see graphic). Like the intersecting chords theorem and the intersecting secants theorem, the tangent-secant theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle, namely, the power of point theorem.
If a chord were to be extended infinitely on both directions into a line, the object is a secant line. The perpendicular line passing through the chord's midpoint is called sagitta (Latin for "arrow"). More generally, a chord is a line segment joining two points on any curve, for instance, on an ellipse.
In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's Elements.
A secant variety can be used to show the fact that a smooth projective curve can be embedded into the projective 3-space as follows. [2] Let be a smooth curve. Since the dimension of the secant variety S to C has dimension at most 3, if >, then there is a point p on that is not on S and so we have the projection from p to a hyperplane H, which gives the embedding :.
The word secant comes from Latin for "to cut", and a general secant line "cuts" a circle, intersecting it twice; this concept dates to antiquity and can be found in Book 3 of Euclid's Elements, as used e.g. in the intersecting secants theorem. 18th century sources in Latin called any non-tangential line segment external to a circle with one endpoint on the circumference a secans exterior.
Ad
related to: secant example geometry problemskutasoftware.com has been visited by 10K+ users in the past month