enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  3. Long division - Wikipedia

    en.wikipedia.org/wiki/Long_division

    The combination of these two symbols is sometimes known as a long division symbol or division bracket. [8] It developed in the 18th century from an earlier single-line notation separating the dividend from the quotient by a left parenthesis. [9] [10] The process is begun by dividing the left-most digit of the dividend by the divisor.

  4. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    This pen-and-paper method uses the same algorithm as polynomial long division, but mental calculation is used to determine remainders. This requires less writing, and can therefore be a faster method once mastered. The division is at first written in a similar way as long multiplication with the dividend at the top, and the divisor below it.

  5. Euclidean division - Wikipedia

    en.wikipedia.org/wiki/Euclidean_division

    The theorem is frequently referred to as the division algorithm (although it is a theorem and not an algorithm), because its proof as given below lends itself to a simple division algorithm for computing q and r (see the section Proof for more). Division is not defined in the case where b = 0; see division by zero.

  6. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    This efficiency can be described by the number of division steps the algorithm requires, multiplied by the computational expense of each step. The first known analysis of Euclid's algorithm is due to A. A. L. Reynaud in 1811, [87] who showed that the number of division steps on input (u, v) is bounded by v; later he improved this to v/2 + 2.

  7. Ruffini's rule - Wikipedia

    en.wikipedia.org/wiki/Ruffini's_rule

    In mathematics, Ruffini's rule is a method for computation of the Euclidean division of a polynomial by a binomial of the form x – r. It was described by Paolo Ruffini in 1809. [ 1 ] The rule is a special case of synthetic division in which the divisor is a linear factor.

  8. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    The original number is divisible by seven if and only if the number obtained using this algorithm is divisible by seven. This method is especially suitable for large numbers. Example 1: The number to be tested is 157514. First we separate the number into three digit pairs: 15, 75 and 14. Then we apply the algorithm: 1 × 15 − 3 × 75 + 2 × ...

  9. Bézout's identity - Wikipedia

    en.wikipedia.org/wiki/Bézout's_identity

    As an example, the greatest common divisor of 15 and 69 is 3, and 3 can be written as a combination of 15 and 69 as 3 = 15 × (−9) + 69 × 2, with Bézout coefficients −9 and 2. Many other theorems in elementary number theory, such as Euclid's lemma or the Chinese remainder theorem , result from Bézout's identity.