Search results
Results from the WOW.Com Content Network
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.
Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic ...
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
The distance along the great circle will then be s 12 = Rσ 12, where R is the assumed radius of the Earth and σ 12 is expressed in radians. Using the mean Earth radius, R = R 1 ≈ 6,371 km (3,959 mi) yields results for the distance s 12 which are within 1% of the geodesic length for the WGS84 ellipsoid; see Geodesics on an ellipsoid for details.
The formulas involved can be complex and in some cases, such as in the ECEF to geodetic conversion above, the conversion has no closed-form solution and approximate methods must be used. References such as the DMA Technical Manual 8358.1 [15] and the USGS paper Map Projections: A Working Manual [16] contain formulas for conversion of map ...
For example, some modern British maps have three bar scales, one each for kilometres, miles and nautical miles. A lexical scale in a language known to the user may be easier to visualise than a ratio: if the scale is an inch to two miles and the map user can see two villages that are about two inches apart on the map, then it is easy to work ...
Web Mercator is a slight variant of the Mercator projection, one used primarily in Web-based mapping programs. It uses the same formulas as the standard Mercator as used for small-scale maps. However, the Web Mercator uses the spherical formulas at all scales whereas large-scale Mercator maps normally use the ellipsoidal form of the projection.