Search results
Results from the WOW.Com Content Network
In database systems, a propagation constraint "details what should happen to a related table when we update a row or rows of a target table" (Paul Beynon-Davies, 2004, p.108). Tables are linked using primary key to foreign key relationships.
Lambda architecture depends on a data model with an append-only, immutable data source that serves as a system of record. [2]: 32 It is intended for ingesting and processing timestamped events that are appended to existing events rather than overwriting them. State is determined from the natural time-based ordering of the data.
For example, in economics the optimal profit to a player is calculated subject to a constrained space of actions, where a Lagrange multiplier is the change in the optimal value of the objective function (profit) due to the relaxation of a given constraint (e.g. through a change in income); in such a context is the marginal cost of the ...
In typed lambda calculus, functions can be applied only if they are capable of accepting the given input's "type" of data. Typed lambda calculi are strictly weaker than the untyped lambda calculus, which is the primary subject of this article, in the sense that typed lambda calculi can express less than the untyped calculus can. On the other ...
The bucket elimination algorithm can be adapted for constraint optimization. A given variable can be indeed removed from the problem by replacing all soft constraints containing it with a new soft constraint. The cost of this new constraint is computed assuming a maximal value for every value of the removed variable.
All stored constraints involving variable M are awakened: in this case, constraint propagation on the all_different constraint removes value 1 from the domain of all the remaining variables. Constraint propagation may solve the problem by reducing all domains to a single value, it may prove that the problem has no solution by reducing a domain ...
Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose state must satisfy a number of constraints or limitations. CSPs represent the entities in a problem as a homogeneous collection of finite constraints over variables , which is solved by constraint satisfaction methods.
The constraint can be used as a way to incorporate expressive [clarification needed] prior knowledge into the model and bias the assignments made by the learned model to satisfy these constraints. The framework can be used to support decisions in an expressive output space while maintaining modularity and tractability of training and inference.