Search results
Results from the WOW.Com Content Network
A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
In mathematics, a geometric algebra (also known as a Clifford algebra) is an algebra that can represent and manipulate geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the geometric product. Multiplication of vectors results in higher-dimensional objects called multivectors ...
Geometric progression, a sequence of numbers such that the quotient of any two successive members of the sequence is a constant; Harmonic progression (mathematics), a sequence of numbers such that their reciprocals form an arithmetic progression; In music: Chord progression, series of chords played in order
The geometric mean of two positive numbers is never greater than the arithmetic mean. [3] So the geometric means are an increasing sequence g 0 ≤ g 1 ≤ g 2 ≤ ...; the arithmetic means are a decreasing sequence a 0 ≥ a 1 ≥ a 2 ≥ ...; and g n ≤ M(x, y) ≤ a n for any n. These are strict inequalities if x ≠ y.
Illustration of 3 geometric series with partial sums from 1 to 6 terms. The dashed line represents the limit. Strictly speaking, a series is said to converge, to be convergent, or to be summable when the sequence of its partial sums has a limit. When the limit of the sequence of partial sums does not exist, the series diverges or is divergent. [23]
Such a sequence is called a singly infinite sequence or a one-sided infinite sequence when disambiguation is necessary. In contrast, a sequence that is infinite in both directions—i.e. that has neither a first nor a final element—is called a bi-infinite sequence , two-way infinite sequence , or doubly infinite sequence .
The scope of algebra thus grew to include the study of algebraic structures. This object of algebra was called modern algebra or abstract algebra, as established by the influence and works of Emmy Noether. [36] Some types of algebraic structures have useful and often fundamental properties, in many areas of mathematics.