Search results
Results from the WOW.Com Content Network
Since BFGS (and hence L-BFGS) is designed to minimize smooth functions without constraints, the L-BFGS algorithm must be modified to handle functions that include non-differentiable components or constraints. A popular class of modifications are called active-set methods, based on the concept of the active set. The idea is that when restricted ...
The Lagrange multiplier theorem states that at any local maximum (or minimum) of the function evaluated under the equality constraints, if constraint qualification applies (explained below), then the gradient of the function (at that point) can be expressed as a linear combination of the gradients of the constraints (at that point), with the ...
The entropy () thus sets a minimum value for the cross-entropy (,), the expected number of bits required when using a code based on Q rather than P; and the Kullback–Leibler divergence therefore represents the expected number of extra bits that must be transmitted to identify a value x drawn from X, if a code is used corresponding to the ...
The optimization problem is to minimize (), where is a vector in , and is a differentiable scalar function. There are no constraints on the values that x {\displaystyle \mathbf {x} } can take. The algorithm begins at an initial estimate x 0 {\displaystyle \mathbf {x} _{0}} for the optimal value and proceeds iteratively to get a better estimate ...
If the constrained problem has only equality constraints, the method of Lagrange multipliers can be used to convert it into an unconstrained problem whose number of variables is the original number of variables plus the original number of equality constraints. Alternatively, if the constraints are all equality constraints and are all linear ...
Including 0, the set has a semiring structure (0 being the additive identity), known as the probability semiring; taking logarithms (with a choice of base giving a logarithmic unit) gives an isomorphism with the log semiring (with 0 corresponding to ), and its units (the finite numbers, excluding ) correspond to the positive real numbers.
In numerical analysis, a quasi-Newton method is an iterative numerical method used either to find zeroes or to find local maxima and minima of functions via an iterative recurrence formula much like the one for Newton's method, except using approximations of the derivatives of the functions in place of exact derivatives.
In mathematics, low-rank approximation refers to the process of approximating a given matrix by a matrix of lower rank. More precisely, it is a minimization problem, in which the cost function measures the fit between a given matrix (the data) and an approximating matrix (the optimization variable), subject to a constraint that the approximating matrix has reduced rank.