Search results
Results from the WOW.Com Content Network
The image sampling frequency is the repetition rate of the sensor integration period. Since the integration period may be significantly shorter than the time between repetitions, the sampling frequency can be different from the inverse of the sample time: 50 Hz – PAL video; 60 / 1.001 Hz ~= 59.94 Hz – NTSC video
For a given sampling rate (samples per second), the Nyquist frequency (cycles per second) is the frequency whose cycle-length (or period) is twice the interval between samples, thus 0.5 cycle/sample. For example, audio CDs have a sampling rate of 44100 samples/second. At 0.5 cycle/sample, the corresponding Nyquist frequency is 22050 cycles/second .
The term Nyquist Sampling Theorem (capitalized thus) appeared as early as 1959 in a book from his former employer, Bell Labs, [22] and appeared again in 1963, [23] and not capitalized in 1965. [24] It had been called the Shannon Sampling Theorem as early as 1954, [25] but also just the sampling theorem by several other books in the early 1950s.
Fig 1: Typical example of Nyquist frequency and rate. They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth). In signal processing, the Nyquist rate, named after Harry Nyquist, is a value equal to twice the highest frequency of a given function or signal
The samples (sometimes called frequency bins) are numbered consecutively, corresponding to a frequency normalization by . [2]: p.56 eq.(16) [3] The normalized Nyquist frequency is with the unit 1 / N th cycle/sample. Angular frequency, denoted by and with the unit radians per second, can be similarly normalized.
Thus, the sampling frequency may be only a little bit greater than 43.2 MHz, but the input bandwidth of the system must be at least 108 MHz. Similarly, the accuracy of the sampling timing, or aperture uncertainty of the sampler, frequently the analog-to-digital converter , must be appropriate for the frequencies being sampled 108MHz, not the ...
The sampling theorem states that sampling frequency would have to be greater than 200 Hz. Sampling at four times that rate requires a sampling frequency of 800 Hz. This gives the anti-aliasing filter a transition band of 300 Hz ((f s /2) − B = (800 Hz/2) − 100 Hz = 300 Hz) instead of 0 Hz if the sampling frequency was 200 Hz. Achieving an ...
The sinc function as audio, at 2000 Hz (±1.5 seconds around zero) In mathematics, the historical unnormalized sinc function is defined for x ≠ 0 by = .. Alternatively, the unnormalized sinc function is often called the sampling function, indicated as Sa(x).